Solve for x
x=\frac{60y}{y+60}
y\neq 0\text{ and }y\neq -60
Solve for y
y=-\frac{60x}{x-60}
x\neq 0\text{ and }x\neq 60
Graph
Share
Copied to clipboard
60y\times 2-60x\times 2=xy\times 2
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 60xy, the least common multiple of x,y,60.
120y-60x\times 2=xy\times 2
Multiply 60 and 2 to get 120.
120y-120x=xy\times 2
Multiply 60 and 2 to get 120.
120y-120x-xy\times 2=0
Subtract xy\times 2 from both sides.
120y-120x-2xy=0
Multiply -1 and 2 to get -2.
-120x-2xy=-120y
Subtract 120y from both sides. Anything subtracted from zero gives its negation.
\left(-120-2y\right)x=-120y
Combine all terms containing x.
\left(-2y-120\right)x=-120y
The equation is in standard form.
\frac{\left(-2y-120\right)x}{-2y-120}=-\frac{120y}{-2y-120}
Divide both sides by -120-2y.
x=-\frac{120y}{-2y-120}
Dividing by -120-2y undoes the multiplication by -120-2y.
x=\frac{60y}{y+60}
Divide -120y by -120-2y.
x=\frac{60y}{y+60}\text{, }x\neq 0
Variable x cannot be equal to 0.
60y\times 2-60x\times 2=xy\times 2
Variable y cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 60xy, the least common multiple of x,y,60.
120y-60x\times 2=xy\times 2
Multiply 60 and 2 to get 120.
120y-120x=xy\times 2
Multiply 60 and 2 to get 120.
120y-120x-xy\times 2=0
Subtract xy\times 2 from both sides.
120y-120x-2xy=0
Multiply -1 and 2 to get -2.
120y-2xy=120x
Add 120x to both sides. Anything plus zero gives itself.
\left(120-2x\right)y=120x
Combine all terms containing y.
\frac{\left(120-2x\right)y}{120-2x}=\frac{120x}{120-2x}
Divide both sides by 120-2x.
y=\frac{120x}{120-2x}
Dividing by 120-2x undoes the multiplication by 120-2x.
y=\frac{60x}{60-x}
Divide 120x by 120-2x.
y=\frac{60x}{60-x}\text{, }y\neq 0
Variable y cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}