Skip to main content
Solve for x (complex solution)
Tick mark Image
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

2\times 2=x\left(2+x\right)
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 2x, the least common multiple of x,2.
4=x\left(2+x\right)
Multiply 2 and 2 to get 4.
4=2x+x^{2}
Use the distributive property to multiply x by 2+x.
2x+x^{2}=4
Swap sides so that all variable terms are on the left hand side.
2x+x^{2}-4=0
Subtract 4 from both sides.
x^{2}+2x-4=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-2±\sqrt{2^{2}-4\left(-4\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 2 for b, and -4 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-2±\sqrt{4-4\left(-4\right)}}{2}
Square 2.
x=\frac{-2±\sqrt{4+16}}{2}
Multiply -4 times -4.
x=\frac{-2±\sqrt{20}}{2}
Add 4 to 16.
x=\frac{-2±2\sqrt{5}}{2}
Take the square root of 20.
x=\frac{2\sqrt{5}-2}{2}
Now solve the equation x=\frac{-2±2\sqrt{5}}{2} when ± is plus. Add -2 to 2\sqrt{5}.
x=\sqrt{5}-1
Divide -2+2\sqrt{5} by 2.
x=\frac{-2\sqrt{5}-2}{2}
Now solve the equation x=\frac{-2±2\sqrt{5}}{2} when ± is minus. Subtract 2\sqrt{5} from -2.
x=-\sqrt{5}-1
Divide -2-2\sqrt{5} by 2.
x=\sqrt{5}-1 x=-\sqrt{5}-1
The equation is now solved.
2\times 2=x\left(2+x\right)
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 2x, the least common multiple of x,2.
4=x\left(2+x\right)
Multiply 2 and 2 to get 4.
4=2x+x^{2}
Use the distributive property to multiply x by 2+x.
2x+x^{2}=4
Swap sides so that all variable terms are on the left hand side.
x^{2}+2x=4
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
x^{2}+2x+1^{2}=4+1^{2}
Divide 2, the coefficient of the x term, by 2 to get 1. Then add the square of 1 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+2x+1=4+1
Square 1.
x^{2}+2x+1=5
Add 4 to 1.
\left(x+1\right)^{2}=5
Factor x^{2}+2x+1. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+1\right)^{2}}=\sqrt{5}
Take the square root of both sides of the equation.
x+1=\sqrt{5} x+1=-\sqrt{5}
Simplify.
x=\sqrt{5}-1 x=-\sqrt{5}-1
Subtract 1 from both sides of the equation.
2\times 2=x\left(2+x\right)
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 2x, the least common multiple of x,2.
4=x\left(2+x\right)
Multiply 2 and 2 to get 4.
4=2x+x^{2}
Use the distributive property to multiply x by 2+x.
2x+x^{2}=4
Swap sides so that all variable terms are on the left hand side.
2x+x^{2}-4=0
Subtract 4 from both sides.
x^{2}+2x-4=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-2±\sqrt{2^{2}-4\left(-4\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 2 for b, and -4 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-2±\sqrt{4-4\left(-4\right)}}{2}
Square 2.
x=\frac{-2±\sqrt{4+16}}{2}
Multiply -4 times -4.
x=\frac{-2±\sqrt{20}}{2}
Add 4 to 16.
x=\frac{-2±2\sqrt{5}}{2}
Take the square root of 20.
x=\frac{2\sqrt{5}-2}{2}
Now solve the equation x=\frac{-2±2\sqrt{5}}{2} when ± is plus. Add -2 to 2\sqrt{5}.
x=\sqrt{5}-1
Divide -2+2\sqrt{5} by 2.
x=\frac{-2\sqrt{5}-2}{2}
Now solve the equation x=\frac{-2±2\sqrt{5}}{2} when ± is minus. Subtract 2\sqrt{5} from -2.
x=-\sqrt{5}-1
Divide -2-2\sqrt{5} by 2.
x=\sqrt{5}-1 x=-\sqrt{5}-1
The equation is now solved.
2\times 2=x\left(2+x\right)
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 2x, the least common multiple of x,2.
4=x\left(2+x\right)
Multiply 2 and 2 to get 4.
4=2x+x^{2}
Use the distributive property to multiply x by 2+x.
2x+x^{2}=4
Swap sides so that all variable terms are on the left hand side.
x^{2}+2x=4
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
x^{2}+2x+1^{2}=4+1^{2}
Divide 2, the coefficient of the x term, by 2 to get 1. Then add the square of 1 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+2x+1=4+1
Square 1.
x^{2}+2x+1=5
Add 4 to 1.
\left(x+1\right)^{2}=5
Factor x^{2}+2x+1. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+1\right)^{2}}=\sqrt{5}
Take the square root of both sides of the equation.
x+1=\sqrt{5} x+1=-\sqrt{5}
Simplify.
x=\sqrt{5}-1 x=-\sqrt{5}-1
Subtract 1 from both sides of the equation.