Solve for x
x=-\frac{2y}{y+3}
y\neq 0\text{ and }y\neq -3
Solve for y
y=-\frac{3x}{x+2}
x\neq 0\text{ and }x\neq -2
Graph
Share
Copied to clipboard
y\times 2+x\times 3=-xy
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by xy, the least common multiple of x,y.
y\times 2+x\times 3+xy=0
Add xy to both sides.
x\times 3+xy=-y\times 2
Subtract y\times 2 from both sides. Anything subtracted from zero gives its negation.
x\times 3+xy=-2y
Multiply -1 and 2 to get -2.
\left(3+y\right)x=-2y
Combine all terms containing x.
\left(y+3\right)x=-2y
The equation is in standard form.
\frac{\left(y+3\right)x}{y+3}=-\frac{2y}{y+3}
Divide both sides by y+3.
x=-\frac{2y}{y+3}
Dividing by y+3 undoes the multiplication by y+3.
x=-\frac{2y}{y+3}\text{, }x\neq 0
Variable x cannot be equal to 0.
y\times 2+x\times 3=-xy
Variable y cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by xy, the least common multiple of x,y.
y\times 2+x\times 3+xy=0
Add xy to both sides.
y\times 2+xy=-x\times 3
Subtract x\times 3 from both sides. Anything subtracted from zero gives its negation.
y\times 2+xy=-3x
Multiply -1 and 3 to get -3.
\left(2+x\right)y=-3x
Combine all terms containing y.
\left(x+2\right)y=-3x
The equation is in standard form.
\frac{\left(x+2\right)y}{x+2}=-\frac{3x}{x+2}
Divide both sides by x+2.
y=-\frac{3x}{x+2}
Dividing by x+2 undoes the multiplication by x+2.
y=-\frac{3x}{x+2}\text{, }y\neq 0
Variable y cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}