Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(x+2\right)\times 2-\left(x-2\right)\left(x+1\right)\times 2=x^{2}-4
Variable x cannot be equal to any of the values -2,-1,2 since division by zero is not defined. Multiply both sides of the equation by \left(x-2\right)\left(x+1\right)\left(x+2\right), the least common multiple of x^{2}-x-2,x+2,x+1.
2x+4-\left(x-2\right)\left(x+1\right)\times 2=x^{2}-4
Use the distributive property to multiply x+2 by 2.
2x+4-\left(x^{2}-x-2\right)\times 2=x^{2}-4
Use the distributive property to multiply x-2 by x+1 and combine like terms.
2x+4-\left(2x^{2}-2x-4\right)=x^{2}-4
Use the distributive property to multiply x^{2}-x-2 by 2.
2x+4-2x^{2}+2x+4=x^{2}-4
To find the opposite of 2x^{2}-2x-4, find the opposite of each term.
4x+4-2x^{2}+4=x^{2}-4
Combine 2x and 2x to get 4x.
4x+8-2x^{2}=x^{2}-4
Add 4 and 4 to get 8.
4x+8-2x^{2}-x^{2}=-4
Subtract x^{2} from both sides.
4x+8-3x^{2}=-4
Combine -2x^{2} and -x^{2} to get -3x^{2}.
4x+8-3x^{2}+4=0
Add 4 to both sides.
4x+12-3x^{2}=0
Add 8 and 4 to get 12.
-3x^{2}+4x+12=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-4±\sqrt{4^{2}-4\left(-3\right)\times 12}}{2\left(-3\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -3 for a, 4 for b, and 12 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-4±\sqrt{16-4\left(-3\right)\times 12}}{2\left(-3\right)}
Square 4.
x=\frac{-4±\sqrt{16+12\times 12}}{2\left(-3\right)}
Multiply -4 times -3.
x=\frac{-4±\sqrt{16+144}}{2\left(-3\right)}
Multiply 12 times 12.
x=\frac{-4±\sqrt{160}}{2\left(-3\right)}
Add 16 to 144.
x=\frac{-4±4\sqrt{10}}{2\left(-3\right)}
Take the square root of 160.
x=\frac{-4±4\sqrt{10}}{-6}
Multiply 2 times -3.
x=\frac{4\sqrt{10}-4}{-6}
Now solve the equation x=\frac{-4±4\sqrt{10}}{-6} when ± is plus. Add -4 to 4\sqrt{10}.
x=\frac{2-2\sqrt{10}}{3}
Divide -4+4\sqrt{10} by -6.
x=\frac{-4\sqrt{10}-4}{-6}
Now solve the equation x=\frac{-4±4\sqrt{10}}{-6} when ± is minus. Subtract 4\sqrt{10} from -4.
x=\frac{2\sqrt{10}+2}{3}
Divide -4-4\sqrt{10} by -6.
x=\frac{2-2\sqrt{10}}{3} x=\frac{2\sqrt{10}+2}{3}
The equation is now solved.
\left(x+2\right)\times 2-\left(x-2\right)\left(x+1\right)\times 2=x^{2}-4
Variable x cannot be equal to any of the values -2,-1,2 since division by zero is not defined. Multiply both sides of the equation by \left(x-2\right)\left(x+1\right)\left(x+2\right), the least common multiple of x^{2}-x-2,x+2,x+1.
2x+4-\left(x-2\right)\left(x+1\right)\times 2=x^{2}-4
Use the distributive property to multiply x+2 by 2.
2x+4-\left(x^{2}-x-2\right)\times 2=x^{2}-4
Use the distributive property to multiply x-2 by x+1 and combine like terms.
2x+4-\left(2x^{2}-2x-4\right)=x^{2}-4
Use the distributive property to multiply x^{2}-x-2 by 2.
2x+4-2x^{2}+2x+4=x^{2}-4
To find the opposite of 2x^{2}-2x-4, find the opposite of each term.
4x+4-2x^{2}+4=x^{2}-4
Combine 2x and 2x to get 4x.
4x+8-2x^{2}=x^{2}-4
Add 4 and 4 to get 8.
4x+8-2x^{2}-x^{2}=-4
Subtract x^{2} from both sides.
4x+8-3x^{2}=-4
Combine -2x^{2} and -x^{2} to get -3x^{2}.
4x-3x^{2}=-4-8
Subtract 8 from both sides.
4x-3x^{2}=-12
Subtract 8 from -4 to get -12.
-3x^{2}+4x=-12
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-3x^{2}+4x}{-3}=-\frac{12}{-3}
Divide both sides by -3.
x^{2}+\frac{4}{-3}x=-\frac{12}{-3}
Dividing by -3 undoes the multiplication by -3.
x^{2}-\frac{4}{3}x=-\frac{12}{-3}
Divide 4 by -3.
x^{2}-\frac{4}{3}x=4
Divide -12 by -3.
x^{2}-\frac{4}{3}x+\left(-\frac{2}{3}\right)^{2}=4+\left(-\frac{2}{3}\right)^{2}
Divide -\frac{4}{3}, the coefficient of the x term, by 2 to get -\frac{2}{3}. Then add the square of -\frac{2}{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{4}{3}x+\frac{4}{9}=4+\frac{4}{9}
Square -\frac{2}{3} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{4}{3}x+\frac{4}{9}=\frac{40}{9}
Add 4 to \frac{4}{9}.
\left(x-\frac{2}{3}\right)^{2}=\frac{40}{9}
Factor x^{2}-\frac{4}{3}x+\frac{4}{9}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{2}{3}\right)^{2}}=\sqrt{\frac{40}{9}}
Take the square root of both sides of the equation.
x-\frac{2}{3}=\frac{2\sqrt{10}}{3} x-\frac{2}{3}=-\frac{2\sqrt{10}}{3}
Simplify.
x=\frac{2\sqrt{10}+2}{3} x=\frac{2-2\sqrt{10}}{3}
Add \frac{2}{3} to both sides of the equation.