Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(x+2\right)\left(x+1\right)\times 2+\left(x-2\right)\left(x-1\right)=\left(x^{2}-1\right)\times 4
Variable x cannot be equal to any of the values -2,-1,1,2 since division by zero is not defined. Multiply both sides of the equation by \left(x-2\right)\left(x-1\right)\left(x+1\right)\left(x+2\right), the least common multiple of x^{2}-3x+2,x^{2}+3x+2,x^{2}-4.
\left(x^{2}+3x+2\right)\times 2+\left(x-2\right)\left(x-1\right)=\left(x^{2}-1\right)\times 4
Use the distributive property to multiply x+2 by x+1 and combine like terms.
2x^{2}+6x+4+\left(x-2\right)\left(x-1\right)=\left(x^{2}-1\right)\times 4
Use the distributive property to multiply x^{2}+3x+2 by 2.
2x^{2}+6x+4+x^{2}-3x+2=\left(x^{2}-1\right)\times 4
Use the distributive property to multiply x-2 by x-1 and combine like terms.
3x^{2}+6x+4-3x+2=\left(x^{2}-1\right)\times 4
Combine 2x^{2} and x^{2} to get 3x^{2}.
3x^{2}+3x+4+2=\left(x^{2}-1\right)\times 4
Combine 6x and -3x to get 3x.
3x^{2}+3x+6=\left(x^{2}-1\right)\times 4
Add 4 and 2 to get 6.
3x^{2}+3x+6=4x^{2}-4
Use the distributive property to multiply x^{2}-1 by 4.
3x^{2}+3x+6-4x^{2}=-4
Subtract 4x^{2} from both sides.
-x^{2}+3x+6=-4
Combine 3x^{2} and -4x^{2} to get -x^{2}.
-x^{2}+3x+6+4=0
Add 4 to both sides.
-x^{2}+3x+10=0
Add 6 and 4 to get 10.
a+b=3 ab=-10=-10
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as -x^{2}+ax+bx+10. To find a and b, set up a system to be solved.
-1,10 -2,5
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -10.
-1+10=9 -2+5=3
Calculate the sum for each pair.
a=5 b=-2
The solution is the pair that gives sum 3.
\left(-x^{2}+5x\right)+\left(-2x+10\right)
Rewrite -x^{2}+3x+10 as \left(-x^{2}+5x\right)+\left(-2x+10\right).
-x\left(x-5\right)-2\left(x-5\right)
Factor out -x in the first and -2 in the second group.
\left(x-5\right)\left(-x-2\right)
Factor out common term x-5 by using distributive property.
x=5 x=-2
To find equation solutions, solve x-5=0 and -x-2=0.
x=5
Variable x cannot be equal to -2.
\left(x+2\right)\left(x+1\right)\times 2+\left(x-2\right)\left(x-1\right)=\left(x^{2}-1\right)\times 4
Variable x cannot be equal to any of the values -2,-1,1,2 since division by zero is not defined. Multiply both sides of the equation by \left(x-2\right)\left(x-1\right)\left(x+1\right)\left(x+2\right), the least common multiple of x^{2}-3x+2,x^{2}+3x+2,x^{2}-4.
\left(x^{2}+3x+2\right)\times 2+\left(x-2\right)\left(x-1\right)=\left(x^{2}-1\right)\times 4
Use the distributive property to multiply x+2 by x+1 and combine like terms.
2x^{2}+6x+4+\left(x-2\right)\left(x-1\right)=\left(x^{2}-1\right)\times 4
Use the distributive property to multiply x^{2}+3x+2 by 2.
2x^{2}+6x+4+x^{2}-3x+2=\left(x^{2}-1\right)\times 4
Use the distributive property to multiply x-2 by x-1 and combine like terms.
3x^{2}+6x+4-3x+2=\left(x^{2}-1\right)\times 4
Combine 2x^{2} and x^{2} to get 3x^{2}.
3x^{2}+3x+4+2=\left(x^{2}-1\right)\times 4
Combine 6x and -3x to get 3x.
3x^{2}+3x+6=\left(x^{2}-1\right)\times 4
Add 4 and 2 to get 6.
3x^{2}+3x+6=4x^{2}-4
Use the distributive property to multiply x^{2}-1 by 4.
3x^{2}+3x+6-4x^{2}=-4
Subtract 4x^{2} from both sides.
-x^{2}+3x+6=-4
Combine 3x^{2} and -4x^{2} to get -x^{2}.
-x^{2}+3x+6+4=0
Add 4 to both sides.
-x^{2}+3x+10=0
Add 6 and 4 to get 10.
x=\frac{-3±\sqrt{3^{2}-4\left(-1\right)\times 10}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, 3 for b, and 10 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-3±\sqrt{9-4\left(-1\right)\times 10}}{2\left(-1\right)}
Square 3.
x=\frac{-3±\sqrt{9+4\times 10}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-3±\sqrt{9+40}}{2\left(-1\right)}
Multiply 4 times 10.
x=\frac{-3±\sqrt{49}}{2\left(-1\right)}
Add 9 to 40.
x=\frac{-3±7}{2\left(-1\right)}
Take the square root of 49.
x=\frac{-3±7}{-2}
Multiply 2 times -1.
x=\frac{4}{-2}
Now solve the equation x=\frac{-3±7}{-2} when ± is plus. Add -3 to 7.
x=-2
Divide 4 by -2.
x=-\frac{10}{-2}
Now solve the equation x=\frac{-3±7}{-2} when ± is minus. Subtract 7 from -3.
x=5
Divide -10 by -2.
x=-2 x=5
The equation is now solved.
x=5
Variable x cannot be equal to -2.
\left(x+2\right)\left(x+1\right)\times 2+\left(x-2\right)\left(x-1\right)=\left(x^{2}-1\right)\times 4
Variable x cannot be equal to any of the values -2,-1,1,2 since division by zero is not defined. Multiply both sides of the equation by \left(x-2\right)\left(x-1\right)\left(x+1\right)\left(x+2\right), the least common multiple of x^{2}-3x+2,x^{2}+3x+2,x^{2}-4.
\left(x^{2}+3x+2\right)\times 2+\left(x-2\right)\left(x-1\right)=\left(x^{2}-1\right)\times 4
Use the distributive property to multiply x+2 by x+1 and combine like terms.
2x^{2}+6x+4+\left(x-2\right)\left(x-1\right)=\left(x^{2}-1\right)\times 4
Use the distributive property to multiply x^{2}+3x+2 by 2.
2x^{2}+6x+4+x^{2}-3x+2=\left(x^{2}-1\right)\times 4
Use the distributive property to multiply x-2 by x-1 and combine like terms.
3x^{2}+6x+4-3x+2=\left(x^{2}-1\right)\times 4
Combine 2x^{2} and x^{2} to get 3x^{2}.
3x^{2}+3x+4+2=\left(x^{2}-1\right)\times 4
Combine 6x and -3x to get 3x.
3x^{2}+3x+6=\left(x^{2}-1\right)\times 4
Add 4 and 2 to get 6.
3x^{2}+3x+6=4x^{2}-4
Use the distributive property to multiply x^{2}-1 by 4.
3x^{2}+3x+6-4x^{2}=-4
Subtract 4x^{2} from both sides.
-x^{2}+3x+6=-4
Combine 3x^{2} and -4x^{2} to get -x^{2}.
-x^{2}+3x=-4-6
Subtract 6 from both sides.
-x^{2}+3x=-10
Subtract 6 from -4 to get -10.
\frac{-x^{2}+3x}{-1}=-\frac{10}{-1}
Divide both sides by -1.
x^{2}+\frac{3}{-1}x=-\frac{10}{-1}
Dividing by -1 undoes the multiplication by -1.
x^{2}-3x=-\frac{10}{-1}
Divide 3 by -1.
x^{2}-3x=10
Divide -10 by -1.
x^{2}-3x+\left(-\frac{3}{2}\right)^{2}=10+\left(-\frac{3}{2}\right)^{2}
Divide -3, the coefficient of the x term, by 2 to get -\frac{3}{2}. Then add the square of -\frac{3}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-3x+\frac{9}{4}=10+\frac{9}{4}
Square -\frac{3}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-3x+\frac{9}{4}=\frac{49}{4}
Add 10 to \frac{9}{4}.
\left(x-\frac{3}{2}\right)^{2}=\frac{49}{4}
Factor x^{2}-3x+\frac{9}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{3}{2}\right)^{2}}=\sqrt{\frac{49}{4}}
Take the square root of both sides of the equation.
x-\frac{3}{2}=\frac{7}{2} x-\frac{3}{2}=-\frac{7}{2}
Simplify.
x=5 x=-2
Add \frac{3}{2} to both sides of the equation.
x=5
Variable x cannot be equal to -2.