Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{2}{\left(x-3\right)\left(x+1\right)}+\frac{1}{\left(x-1\right)\left(-x-1\right)}
Factor x^{2}-2x-3. Factor 1-x^{2}.
\frac{2\left(x-1\right)}{\left(x-3\right)\left(x-1\right)\left(x+1\right)}+\frac{-\left(x-3\right)}{\left(x-3\right)\left(x-1\right)\left(x+1\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-3\right)\left(x+1\right) and \left(x-1\right)\left(-x-1\right) is \left(x-3\right)\left(x-1\right)\left(x+1\right). Multiply \frac{2}{\left(x-3\right)\left(x+1\right)} times \frac{x-1}{x-1}. Multiply \frac{1}{\left(x-1\right)\left(-x-1\right)} times \frac{-\left(x-3\right)}{-\left(x-3\right)}.
\frac{2\left(x-1\right)-\left(x-3\right)}{\left(x-3\right)\left(x-1\right)\left(x+1\right)}
Since \frac{2\left(x-1\right)}{\left(x-3\right)\left(x-1\right)\left(x+1\right)} and \frac{-\left(x-3\right)}{\left(x-3\right)\left(x-1\right)\left(x+1\right)} have the same denominator, add them by adding their numerators.
\frac{2x-2-x+3}{\left(x-3\right)\left(x-1\right)\left(x+1\right)}
Do the multiplications in 2\left(x-1\right)-\left(x-3\right).
\frac{x+1}{\left(x-3\right)\left(x-1\right)\left(x+1\right)}
Combine like terms in 2x-2-x+3.
\frac{1}{\left(x-3\right)\left(x-1\right)}
Cancel out x+1 in both numerator and denominator.
\frac{1}{x^{2}-4x+3}
Expand \left(x-3\right)\left(x-1\right).
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2}{\left(x-3\right)\left(x+1\right)}+\frac{1}{\left(x-1\right)\left(-x-1\right)})
Factor x^{2}-2x-3. Factor 1-x^{2}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2\left(x-1\right)}{\left(x-3\right)\left(x-1\right)\left(x+1\right)}+\frac{-\left(x-3\right)}{\left(x-3\right)\left(x-1\right)\left(x+1\right)})
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-3\right)\left(x+1\right) and \left(x-1\right)\left(-x-1\right) is \left(x-3\right)\left(x-1\right)\left(x+1\right). Multiply \frac{2}{\left(x-3\right)\left(x+1\right)} times \frac{x-1}{x-1}. Multiply \frac{1}{\left(x-1\right)\left(-x-1\right)} times \frac{-\left(x-3\right)}{-\left(x-3\right)}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2\left(x-1\right)-\left(x-3\right)}{\left(x-3\right)\left(x-1\right)\left(x+1\right)})
Since \frac{2\left(x-1\right)}{\left(x-3\right)\left(x-1\right)\left(x+1\right)} and \frac{-\left(x-3\right)}{\left(x-3\right)\left(x-1\right)\left(x+1\right)} have the same denominator, add them by adding their numerators.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2x-2-x+3}{\left(x-3\right)\left(x-1\right)\left(x+1\right)})
Do the multiplications in 2\left(x-1\right)-\left(x-3\right).
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x+1}{\left(x-3\right)\left(x-1\right)\left(x+1\right)})
Combine like terms in 2x-2-x+3.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{1}{\left(x-3\right)\left(x-1\right)})
Cancel out x+1 in both numerator and denominator.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{1}{x^{2}-4x+3})
Use the distributive property to multiply x-3 by x-1 and combine like terms.
-\left(x^{2}-4x^{1}+3\right)^{-1-1}\frac{\mathrm{d}}{\mathrm{d}x}(x^{2}-4x^{1}+3)
If F is the composition of two differentiable functions f\left(u\right) and u=g\left(x\right), that is, if F\left(x\right)=f\left(g\left(x\right)\right), then the derivative of F is the derivative of f with respect to u times the derivative of g with respect to x, that is, \frac{\mathrm{d}}{\mathrm{d}x}(F)\left(x\right)=\frac{\mathrm{d}}{\mathrm{d}x}(f)\left(g\left(x\right)\right)\frac{\mathrm{d}}{\mathrm{d}x}(g)\left(x\right).
-\left(x^{2}-4x^{1}+3\right)^{-2}\left(2x^{2-1}-4x^{1-1}\right)
The derivative of a polynomial is the sum of the derivatives of its terms. The derivative of a constant term is 0. The derivative of ax^{n} is nax^{n-1}.
\left(x^{2}-4x^{1}+3\right)^{-2}\left(-2x^{1}+4x^{0}\right)
Simplify.
\left(x^{2}-4x+3\right)^{-2}\left(-2x+4x^{0}\right)
For any term t, t^{1}=t.
\left(x^{2}-4x+3\right)^{-2}\left(-2x+4\times 1\right)
For any term t except 0, t^{0}=1.
\left(x^{2}-4x+3\right)^{-2}\left(-2x+4\right)
For any term t, t\times 1=t and 1t=t.