Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{2}{\left(x-3\right)\left(x+4\right)}-\frac{8}{\left(x-3\right)\left(x+3\right)}
Factor x^{2}+x-12. Factor x^{2}-9.
\frac{2\left(x+3\right)}{\left(x-3\right)\left(x+3\right)\left(x+4\right)}-\frac{8\left(x+4\right)}{\left(x-3\right)\left(x+3\right)\left(x+4\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-3\right)\left(x+4\right) and \left(x-3\right)\left(x+3\right) is \left(x-3\right)\left(x+3\right)\left(x+4\right). Multiply \frac{2}{\left(x-3\right)\left(x+4\right)} times \frac{x+3}{x+3}. Multiply \frac{8}{\left(x-3\right)\left(x+3\right)} times \frac{x+4}{x+4}.
\frac{2\left(x+3\right)-8\left(x+4\right)}{\left(x-3\right)\left(x+3\right)\left(x+4\right)}
Since \frac{2\left(x+3\right)}{\left(x-3\right)\left(x+3\right)\left(x+4\right)} and \frac{8\left(x+4\right)}{\left(x-3\right)\left(x+3\right)\left(x+4\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{2x+6-8x-32}{\left(x-3\right)\left(x+3\right)\left(x+4\right)}
Do the multiplications in 2\left(x+3\right)-8\left(x+4\right).
\frac{-6x-26}{\left(x-3\right)\left(x+3\right)\left(x+4\right)}
Combine like terms in 2x+6-8x-32.
\frac{-6x-26}{x^{3}+4x^{2}-9x-36}
Expand \left(x-3\right)\left(x+3\right)\left(x+4\right).