Skip to main content
Solve for x
Tick mark Image
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}\times 2+\left(x^{2}+3\right)\times \frac{1}{2}=x^{2}\left(x^{2}+3\right)
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by x^{2}\left(x^{2}+3\right), the least common multiple of x^{2}+3,x^{2}.
x^{2}\times 2+\frac{1}{2}x^{2}+\frac{3}{2}=x^{2}\left(x^{2}+3\right)
Use the distributive property to multiply x^{2}+3 by \frac{1}{2}.
\frac{5}{2}x^{2}+\frac{3}{2}=x^{2}\left(x^{2}+3\right)
Combine x^{2}\times 2 and \frac{1}{2}x^{2} to get \frac{5}{2}x^{2}.
\frac{5}{2}x^{2}+\frac{3}{2}=x^{4}+3x^{2}
Use the distributive property to multiply x^{2} by x^{2}+3.
\frac{5}{2}x^{2}+\frac{3}{2}-x^{4}=3x^{2}
Subtract x^{4} from both sides.
\frac{5}{2}x^{2}+\frac{3}{2}-x^{4}-3x^{2}=0
Subtract 3x^{2} from both sides.
-\frac{1}{2}x^{2}+\frac{3}{2}-x^{4}=0
Combine \frac{5}{2}x^{2} and -3x^{2} to get -\frac{1}{2}x^{2}.
-t^{2}-\frac{1}{2}t+\frac{3}{2}=0
Substitute t for x^{2}.
t=\frac{-\left(-\frac{1}{2}\right)±\sqrt{\left(-\frac{1}{2}\right)^{2}-4\left(-1\right)\times \frac{3}{2}}}{-2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute -1 for a, -\frac{1}{2} for b, and \frac{3}{2} for c in the quadratic formula.
t=\frac{\frac{1}{2}±\frac{5}{2}}{-2}
Do the calculations.
t=-\frac{3}{2} t=1
Solve the equation t=\frac{\frac{1}{2}±\frac{5}{2}}{-2} when ± is plus and when ± is minus.
x=1 x=-1
Since x=t^{2}, the solutions are obtained by evaluating x=±\sqrt{t} for positive t.