Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{2\left(x^{4}+1\right)}{\left(x^{2}+1\right)\left(x^{4}+1\right)}+\frac{4\left(x^{2}+1\right)}{\left(x^{2}+1\right)\left(x^{4}+1\right)}+\frac{8}{x^{8}-1}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x^{2}+1 and x^{4}+1 is \left(x^{2}+1\right)\left(x^{4}+1\right). Multiply \frac{2}{x^{2}+1} times \frac{x^{4}+1}{x^{4}+1}. Multiply \frac{4}{x^{4}+1} times \frac{x^{2}+1}{x^{2}+1}.
\frac{2\left(x^{4}+1\right)+4\left(x^{2}+1\right)}{\left(x^{2}+1\right)\left(x^{4}+1\right)}+\frac{8}{x^{8}-1}
Since \frac{2\left(x^{4}+1\right)}{\left(x^{2}+1\right)\left(x^{4}+1\right)} and \frac{4\left(x^{2}+1\right)}{\left(x^{2}+1\right)\left(x^{4}+1\right)} have the same denominator, add them by adding their numerators.
\frac{2x^{4}+2+4x^{2}+4}{\left(x^{2}+1\right)\left(x^{4}+1\right)}+\frac{8}{x^{8}-1}
Do the multiplications in 2\left(x^{4}+1\right)+4\left(x^{2}+1\right).
\frac{2x^{4}+6+4x^{2}}{\left(x^{2}+1\right)\left(x^{4}+1\right)}+\frac{8}{x^{8}-1}
Combine like terms in 2x^{4}+2+4x^{2}+4.
\frac{2x^{4}+6+4x^{2}}{\left(x^{2}+1\right)\left(x^{4}+1\right)}+\frac{8}{\left(x-1\right)\left(x+1\right)\left(x^{2}+1\right)\left(x^{4}+1\right)}
Factor x^{8}-1.
\frac{\left(2x^{4}+6+4x^{2}\right)\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)\left(x^{2}+1\right)\left(x^{4}+1\right)}+\frac{8}{\left(x-1\right)\left(x+1\right)\left(x^{2}+1\right)\left(x^{4}+1\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x^{2}+1\right)\left(x^{4}+1\right) and \left(x-1\right)\left(x+1\right)\left(x^{2}+1\right)\left(x^{4}+1\right) is \left(x-1\right)\left(x+1\right)\left(x^{2}+1\right)\left(x^{4}+1\right). Multiply \frac{2x^{4}+6+4x^{2}}{\left(x^{2}+1\right)\left(x^{4}+1\right)} times \frac{\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}.
\frac{\left(2x^{4}+6+4x^{2}\right)\left(x-1\right)\left(x+1\right)+8}{\left(x-1\right)\left(x+1\right)\left(x^{2}+1\right)\left(x^{4}+1\right)}
Since \frac{\left(2x^{4}+6+4x^{2}\right)\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)\left(x^{2}+1\right)\left(x^{4}+1\right)} and \frac{8}{\left(x-1\right)\left(x+1\right)\left(x^{2}+1\right)\left(x^{4}+1\right)} have the same denominator, add them by adding their numerators.
\frac{2x^{6}-2x^{4}+6x^{2}-6+4x^{4}-4x^{2}+8}{\left(x-1\right)\left(x+1\right)\left(x^{2}+1\right)\left(x^{4}+1\right)}
Do the multiplications in \left(2x^{4}+6+4x^{2}\right)\left(x-1\right)\left(x+1\right)+8.
\frac{2x^{6}+2x^{4}+2x^{2}+2}{\left(x-1\right)\left(x+1\right)\left(x^{2}+1\right)\left(x^{4}+1\right)}
Combine like terms in 2x^{6}-2x^{4}+6x^{2}-6+4x^{4}-4x^{2}+8.
\frac{2\left(x^{2}+1\right)\left(x^{4}+1\right)}{\left(x-1\right)\left(x+1\right)\left(x^{2}+1\right)\left(x^{4}+1\right)}
Factor the expressions that are not already factored in \frac{2x^{6}+2x^{4}+2x^{2}+2}{\left(x-1\right)\left(x+1\right)\left(x^{2}+1\right)\left(x^{4}+1\right)}.
\frac{2}{\left(x-1\right)\left(x+1\right)}
Cancel out \left(x^{2}+1\right)\left(x^{4}+1\right) in both numerator and denominator.
\frac{2}{x^{2}-1}
Expand \left(x-1\right)\left(x+1\right).