Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(x-5\right)\times 2-\left(x+5\right)x=\left(x-5\right)\left(x+5\right)
Variable x cannot be equal to any of the values -5,5 since division by zero is not defined. Multiply both sides of the equation by \left(x-5\right)\left(x+5\right), the least common multiple of x+5,x-5.
2x-10-\left(x+5\right)x=\left(x-5\right)\left(x+5\right)
Use the distributive property to multiply x-5 by 2.
2x-10-\left(x^{2}+5x\right)=\left(x-5\right)\left(x+5\right)
Use the distributive property to multiply x+5 by x.
2x-10-x^{2}-5x=\left(x-5\right)\left(x+5\right)
To find the opposite of x^{2}+5x, find the opposite of each term.
-3x-10-x^{2}=\left(x-5\right)\left(x+5\right)
Combine 2x and -5x to get -3x.
-3x-10-x^{2}=x^{2}-25
Consider \left(x-5\right)\left(x+5\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 5.
-3x-10-x^{2}-x^{2}=-25
Subtract x^{2} from both sides.
-3x-10-2x^{2}=-25
Combine -x^{2} and -x^{2} to get -2x^{2}.
-3x-10-2x^{2}+25=0
Add 25 to both sides.
-3x+15-2x^{2}=0
Add -10 and 25 to get 15.
-2x^{2}-3x+15=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\left(-2\right)\times 15}}{2\left(-2\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -2 for a, -3 for b, and 15 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-3\right)±\sqrt{9-4\left(-2\right)\times 15}}{2\left(-2\right)}
Square -3.
x=\frac{-\left(-3\right)±\sqrt{9+8\times 15}}{2\left(-2\right)}
Multiply -4 times -2.
x=\frac{-\left(-3\right)±\sqrt{9+120}}{2\left(-2\right)}
Multiply 8 times 15.
x=\frac{-\left(-3\right)±\sqrt{129}}{2\left(-2\right)}
Add 9 to 120.
x=\frac{3±\sqrt{129}}{2\left(-2\right)}
The opposite of -3 is 3.
x=\frac{3±\sqrt{129}}{-4}
Multiply 2 times -2.
x=\frac{\sqrt{129}+3}{-4}
Now solve the equation x=\frac{3±\sqrt{129}}{-4} when ± is plus. Add 3 to \sqrt{129}.
x=\frac{-\sqrt{129}-3}{4}
Divide 3+\sqrt{129} by -4.
x=\frac{3-\sqrt{129}}{-4}
Now solve the equation x=\frac{3±\sqrt{129}}{-4} when ± is minus. Subtract \sqrt{129} from 3.
x=\frac{\sqrt{129}-3}{4}
Divide 3-\sqrt{129} by -4.
x=\frac{-\sqrt{129}-3}{4} x=\frac{\sqrt{129}-3}{4}
The equation is now solved.
\left(x-5\right)\times 2-\left(x+5\right)x=\left(x-5\right)\left(x+5\right)
Variable x cannot be equal to any of the values -5,5 since division by zero is not defined. Multiply both sides of the equation by \left(x-5\right)\left(x+5\right), the least common multiple of x+5,x-5.
2x-10-\left(x+5\right)x=\left(x-5\right)\left(x+5\right)
Use the distributive property to multiply x-5 by 2.
2x-10-\left(x^{2}+5x\right)=\left(x-5\right)\left(x+5\right)
Use the distributive property to multiply x+5 by x.
2x-10-x^{2}-5x=\left(x-5\right)\left(x+5\right)
To find the opposite of x^{2}+5x, find the opposite of each term.
-3x-10-x^{2}=\left(x-5\right)\left(x+5\right)
Combine 2x and -5x to get -3x.
-3x-10-x^{2}=x^{2}-25
Consider \left(x-5\right)\left(x+5\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 5.
-3x-10-x^{2}-x^{2}=-25
Subtract x^{2} from both sides.
-3x-10-2x^{2}=-25
Combine -x^{2} and -x^{2} to get -2x^{2}.
-3x-2x^{2}=-25+10
Add 10 to both sides.
-3x-2x^{2}=-15
Add -25 and 10 to get -15.
-2x^{2}-3x=-15
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-2x^{2}-3x}{-2}=-\frac{15}{-2}
Divide both sides by -2.
x^{2}+\left(-\frac{3}{-2}\right)x=-\frac{15}{-2}
Dividing by -2 undoes the multiplication by -2.
x^{2}+\frac{3}{2}x=-\frac{15}{-2}
Divide -3 by -2.
x^{2}+\frac{3}{2}x=\frac{15}{2}
Divide -15 by -2.
x^{2}+\frac{3}{2}x+\left(\frac{3}{4}\right)^{2}=\frac{15}{2}+\left(\frac{3}{4}\right)^{2}
Divide \frac{3}{2}, the coefficient of the x term, by 2 to get \frac{3}{4}. Then add the square of \frac{3}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{3}{2}x+\frac{9}{16}=\frac{15}{2}+\frac{9}{16}
Square \frac{3}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{3}{2}x+\frac{9}{16}=\frac{129}{16}
Add \frac{15}{2} to \frac{9}{16} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{3}{4}\right)^{2}=\frac{129}{16}
Factor x^{2}+\frac{3}{2}x+\frac{9}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{3}{4}\right)^{2}}=\sqrt{\frac{129}{16}}
Take the square root of both sides of the equation.
x+\frac{3}{4}=\frac{\sqrt{129}}{4} x+\frac{3}{4}=-\frac{\sqrt{129}}{4}
Simplify.
x=\frac{\sqrt{129}-3}{4} x=\frac{-\sqrt{129}-3}{4}
Subtract \frac{3}{4} from both sides of the equation.