Solve for x
x=-4
Graph
Share
Copied to clipboard
\left(x-1\right)\times 2-\left(x+3\right)\times 5=-5
Variable x cannot be equal to any of the values -3,1 since division by zero is not defined. Multiply both sides of the equation by \left(x-1\right)\left(x+3\right), the least common multiple of x+3,x-1,x^{2}+2x-3.
2x-2-\left(x+3\right)\times 5=-5
Use the distributive property to multiply x-1 by 2.
2x-2-\left(5x+15\right)=-5
Use the distributive property to multiply x+3 by 5.
2x-2-5x-15=-5
To find the opposite of 5x+15, find the opposite of each term.
-3x-2-15=-5
Combine 2x and -5x to get -3x.
-3x-17=-5
Subtract 15 from -2 to get -17.
-3x=-5+17
Add 17 to both sides.
-3x=12
Add -5 and 17 to get 12.
x=\frac{12}{-3}
Divide both sides by -3.
x=-4
Divide 12 by -3 to get -4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}