Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(4x+2\right)\times 2+2\left(x+3\right)\left(2x+1\right)\times \frac{3}{2}=\left(2x+6\right)\times 7
Variable x cannot be equal to any of the values -3,-\frac{1}{2} since division by zero is not defined. Multiply both sides of the equation by 2\left(x+3\right)\left(2x+1\right), the least common multiple of x+3,2,2x+1.
8x+4+2\left(x+3\right)\left(2x+1\right)\times \frac{3}{2}=\left(2x+6\right)\times 7
Use the distributive property to multiply 4x+2 by 2.
8x+4+3\left(x+3\right)\left(2x+1\right)=\left(2x+6\right)\times 7
Multiply 2 and \frac{3}{2} to get 3.
8x+4+\left(3x+9\right)\left(2x+1\right)=\left(2x+6\right)\times 7
Use the distributive property to multiply 3 by x+3.
8x+4+6x^{2}+21x+9=\left(2x+6\right)\times 7
Use the distributive property to multiply 3x+9 by 2x+1 and combine like terms.
29x+4+6x^{2}+9=\left(2x+6\right)\times 7
Combine 8x and 21x to get 29x.
29x+13+6x^{2}=\left(2x+6\right)\times 7
Add 4 and 9 to get 13.
29x+13+6x^{2}=14x+42
Use the distributive property to multiply 2x+6 by 7.
29x+13+6x^{2}-14x=42
Subtract 14x from both sides.
15x+13+6x^{2}=42
Combine 29x and -14x to get 15x.
15x+13+6x^{2}-42=0
Subtract 42 from both sides.
15x-29+6x^{2}=0
Subtract 42 from 13 to get -29.
6x^{2}+15x-29=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-15±\sqrt{15^{2}-4\times 6\left(-29\right)}}{2\times 6}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 6 for a, 15 for b, and -29 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-15±\sqrt{225-4\times 6\left(-29\right)}}{2\times 6}
Square 15.
x=\frac{-15±\sqrt{225-24\left(-29\right)}}{2\times 6}
Multiply -4 times 6.
x=\frac{-15±\sqrt{225+696}}{2\times 6}
Multiply -24 times -29.
x=\frac{-15±\sqrt{921}}{2\times 6}
Add 225 to 696.
x=\frac{-15±\sqrt{921}}{12}
Multiply 2 times 6.
x=\frac{\sqrt{921}-15}{12}
Now solve the equation x=\frac{-15±\sqrt{921}}{12} when ± is plus. Add -15 to \sqrt{921}.
x=\frac{\sqrt{921}}{12}-\frac{5}{4}
Divide -15+\sqrt{921} by 12.
x=\frac{-\sqrt{921}-15}{12}
Now solve the equation x=\frac{-15±\sqrt{921}}{12} when ± is minus. Subtract \sqrt{921} from -15.
x=-\frac{\sqrt{921}}{12}-\frac{5}{4}
Divide -15-\sqrt{921} by 12.
x=\frac{\sqrt{921}}{12}-\frac{5}{4} x=-\frac{\sqrt{921}}{12}-\frac{5}{4}
The equation is now solved.
\left(4x+2\right)\times 2+2\left(x+3\right)\left(2x+1\right)\times \frac{3}{2}=\left(2x+6\right)\times 7
Variable x cannot be equal to any of the values -3,-\frac{1}{2} since division by zero is not defined. Multiply both sides of the equation by 2\left(x+3\right)\left(2x+1\right), the least common multiple of x+3,2,2x+1.
8x+4+2\left(x+3\right)\left(2x+1\right)\times \frac{3}{2}=\left(2x+6\right)\times 7
Use the distributive property to multiply 4x+2 by 2.
8x+4+3\left(x+3\right)\left(2x+1\right)=\left(2x+6\right)\times 7
Multiply 2 and \frac{3}{2} to get 3.
8x+4+\left(3x+9\right)\left(2x+1\right)=\left(2x+6\right)\times 7
Use the distributive property to multiply 3 by x+3.
8x+4+6x^{2}+21x+9=\left(2x+6\right)\times 7
Use the distributive property to multiply 3x+9 by 2x+1 and combine like terms.
29x+4+6x^{2}+9=\left(2x+6\right)\times 7
Combine 8x and 21x to get 29x.
29x+13+6x^{2}=\left(2x+6\right)\times 7
Add 4 and 9 to get 13.
29x+13+6x^{2}=14x+42
Use the distributive property to multiply 2x+6 by 7.
29x+13+6x^{2}-14x=42
Subtract 14x from both sides.
15x+13+6x^{2}=42
Combine 29x and -14x to get 15x.
15x+6x^{2}=42-13
Subtract 13 from both sides.
15x+6x^{2}=29
Subtract 13 from 42 to get 29.
6x^{2}+15x=29
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{6x^{2}+15x}{6}=\frac{29}{6}
Divide both sides by 6.
x^{2}+\frac{15}{6}x=\frac{29}{6}
Dividing by 6 undoes the multiplication by 6.
x^{2}+\frac{5}{2}x=\frac{29}{6}
Reduce the fraction \frac{15}{6} to lowest terms by extracting and canceling out 3.
x^{2}+\frac{5}{2}x+\left(\frac{5}{4}\right)^{2}=\frac{29}{6}+\left(\frac{5}{4}\right)^{2}
Divide \frac{5}{2}, the coefficient of the x term, by 2 to get \frac{5}{4}. Then add the square of \frac{5}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{5}{2}x+\frac{25}{16}=\frac{29}{6}+\frac{25}{16}
Square \frac{5}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{5}{2}x+\frac{25}{16}=\frac{307}{48}
Add \frac{29}{6} to \frac{25}{16} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{5}{4}\right)^{2}=\frac{307}{48}
Factor x^{2}+\frac{5}{2}x+\frac{25}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{5}{4}\right)^{2}}=\sqrt{\frac{307}{48}}
Take the square root of both sides of the equation.
x+\frac{5}{4}=\frac{\sqrt{921}}{12} x+\frac{5}{4}=-\frac{\sqrt{921}}{12}
Simplify.
x=\frac{\sqrt{921}}{12}-\frac{5}{4} x=-\frac{\sqrt{921}}{12}-\frac{5}{4}
Subtract \frac{5}{4} from both sides of the equation.