Solve for x
x = \frac{\sqrt{2185} - 41}{4} \approx 1.435995893
x=\frac{-\sqrt{2185}-41}{4}\approx -21.935995893
Graph
Share
Copied to clipboard
\left(24x-12\right)\times 2+12\left(2x-1\right)\left(x+3\right)\times \frac{1}{12}=12x+36
Variable x cannot be equal to any of the values -3,\frac{1}{2} since division by zero is not defined. Multiply both sides of the equation by 12\left(2x-1\right)\left(x+3\right), the least common multiple of x+3,12,2x-1.
48x-24+12\left(2x-1\right)\left(x+3\right)\times \frac{1}{12}=12x+36
Use the distributive property to multiply 24x-12 by 2.
48x-24+\left(2x-1\right)\left(x+3\right)=12x+36
Multiply 12 and \frac{1}{12} to get 1.
48x-24+2x^{2}+5x-3=12x+36
Use the distributive property to multiply 2x-1 by x+3 and combine like terms.
53x-24+2x^{2}-3=12x+36
Combine 48x and 5x to get 53x.
53x-27+2x^{2}=12x+36
Subtract 3 from -24 to get -27.
53x-27+2x^{2}-12x=36
Subtract 12x from both sides.
41x-27+2x^{2}=36
Combine 53x and -12x to get 41x.
41x-27+2x^{2}-36=0
Subtract 36 from both sides.
41x-63+2x^{2}=0
Subtract 36 from -27 to get -63.
2x^{2}+41x-63=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-41±\sqrt{41^{2}-4\times 2\left(-63\right)}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, 41 for b, and -63 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-41±\sqrt{1681-4\times 2\left(-63\right)}}{2\times 2}
Square 41.
x=\frac{-41±\sqrt{1681-8\left(-63\right)}}{2\times 2}
Multiply -4 times 2.
x=\frac{-41±\sqrt{1681+504}}{2\times 2}
Multiply -8 times -63.
x=\frac{-41±\sqrt{2185}}{2\times 2}
Add 1681 to 504.
x=\frac{-41±\sqrt{2185}}{4}
Multiply 2 times 2.
x=\frac{\sqrt{2185}-41}{4}
Now solve the equation x=\frac{-41±\sqrt{2185}}{4} when ± is plus. Add -41 to \sqrt{2185}.
x=\frac{-\sqrt{2185}-41}{4}
Now solve the equation x=\frac{-41±\sqrt{2185}}{4} when ± is minus. Subtract \sqrt{2185} from -41.
x=\frac{\sqrt{2185}-41}{4} x=\frac{-\sqrt{2185}-41}{4}
The equation is now solved.
\left(24x-12\right)\times 2+12\left(2x-1\right)\left(x+3\right)\times \frac{1}{12}=12x+36
Variable x cannot be equal to any of the values -3,\frac{1}{2} since division by zero is not defined. Multiply both sides of the equation by 12\left(2x-1\right)\left(x+3\right), the least common multiple of x+3,12,2x-1.
48x-24+12\left(2x-1\right)\left(x+3\right)\times \frac{1}{12}=12x+36
Use the distributive property to multiply 24x-12 by 2.
48x-24+\left(2x-1\right)\left(x+3\right)=12x+36
Multiply 12 and \frac{1}{12} to get 1.
48x-24+2x^{2}+5x-3=12x+36
Use the distributive property to multiply 2x-1 by x+3 and combine like terms.
53x-24+2x^{2}-3=12x+36
Combine 48x and 5x to get 53x.
53x-27+2x^{2}=12x+36
Subtract 3 from -24 to get -27.
53x-27+2x^{2}-12x=36
Subtract 12x from both sides.
41x-27+2x^{2}=36
Combine 53x and -12x to get 41x.
41x+2x^{2}=36+27
Add 27 to both sides.
41x+2x^{2}=63
Add 36 and 27 to get 63.
2x^{2}+41x=63
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{2x^{2}+41x}{2}=\frac{63}{2}
Divide both sides by 2.
x^{2}+\frac{41}{2}x=\frac{63}{2}
Dividing by 2 undoes the multiplication by 2.
x^{2}+\frac{41}{2}x+\left(\frac{41}{4}\right)^{2}=\frac{63}{2}+\left(\frac{41}{4}\right)^{2}
Divide \frac{41}{2}, the coefficient of the x term, by 2 to get \frac{41}{4}. Then add the square of \frac{41}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{41}{2}x+\frac{1681}{16}=\frac{63}{2}+\frac{1681}{16}
Square \frac{41}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{41}{2}x+\frac{1681}{16}=\frac{2185}{16}
Add \frac{63}{2} to \frac{1681}{16} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{41}{4}\right)^{2}=\frac{2185}{16}
Factor x^{2}+\frac{41}{2}x+\frac{1681}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{41}{4}\right)^{2}}=\sqrt{\frac{2185}{16}}
Take the square root of both sides of the equation.
x+\frac{41}{4}=\frac{\sqrt{2185}}{4} x+\frac{41}{4}=-\frac{\sqrt{2185}}{4}
Simplify.
x=\frac{\sqrt{2185}-41}{4} x=\frac{-\sqrt{2185}-41}{4}
Subtract \frac{41}{4} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}