Evaluate
\frac{3}{x+3}
Differentiate w.r.t. x
-\frac{3}{\left(x+3\right)^{2}}
Graph
Share
Copied to clipboard
\frac{2}{x+2}+\frac{x}{\left(x+2\right)\left(x+3\right)}
Factor x^{2}+5x+6.
\frac{2\left(x+3\right)}{\left(x+2\right)\left(x+3\right)}+\frac{x}{\left(x+2\right)\left(x+3\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x+2 and \left(x+2\right)\left(x+3\right) is \left(x+2\right)\left(x+3\right). Multiply \frac{2}{x+2} times \frac{x+3}{x+3}.
\frac{2\left(x+3\right)+x}{\left(x+2\right)\left(x+3\right)}
Since \frac{2\left(x+3\right)}{\left(x+2\right)\left(x+3\right)} and \frac{x}{\left(x+2\right)\left(x+3\right)} have the same denominator, add them by adding their numerators.
\frac{2x+6+x}{\left(x+2\right)\left(x+3\right)}
Do the multiplications in 2\left(x+3\right)+x.
\frac{3x+6}{\left(x+2\right)\left(x+3\right)}
Combine like terms in 2x+6+x.
\frac{3\left(x+2\right)}{\left(x+2\right)\left(x+3\right)}
Factor the expressions that are not already factored in \frac{3x+6}{\left(x+2\right)\left(x+3\right)}.
\frac{3}{x+3}
Cancel out x+2 in both numerator and denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}