Solve for x
x = \frac{\sqrt{1249} + 39}{8} \approx 9.292649262
x=\frac{39-\sqrt{1249}}{8}\approx 0.457350738
Graph
Share
Copied to clipboard
\left(10x-20\right)\times 2+\left(5x+5\right)\times 3=4\left(x-2\right)\left(x+1\right)
Variable x cannot be equal to any of the values -1,2 since division by zero is not defined. Multiply both sides of the equation by 10\left(x-2\right)\left(x+1\right), the least common multiple of x+1,2\left(x-2\right),5.
20x-40+\left(5x+5\right)\times 3=4\left(x-2\right)\left(x+1\right)
Use the distributive property to multiply 10x-20 by 2.
20x-40+15x+15=4\left(x-2\right)\left(x+1\right)
Use the distributive property to multiply 5x+5 by 3.
35x-40+15=4\left(x-2\right)\left(x+1\right)
Combine 20x and 15x to get 35x.
35x-25=4\left(x-2\right)\left(x+1\right)
Add -40 and 15 to get -25.
35x-25=\left(4x-8\right)\left(x+1\right)
Use the distributive property to multiply 4 by x-2.
35x-25=4x^{2}-4x-8
Use the distributive property to multiply 4x-8 by x+1 and combine like terms.
35x-25-4x^{2}=-4x-8
Subtract 4x^{2} from both sides.
35x-25-4x^{2}+4x=-8
Add 4x to both sides.
39x-25-4x^{2}=-8
Combine 35x and 4x to get 39x.
39x-25-4x^{2}+8=0
Add 8 to both sides.
39x-17-4x^{2}=0
Add -25 and 8 to get -17.
-4x^{2}+39x-17=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-39±\sqrt{39^{2}-4\left(-4\right)\left(-17\right)}}{2\left(-4\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -4 for a, 39 for b, and -17 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-39±\sqrt{1521-4\left(-4\right)\left(-17\right)}}{2\left(-4\right)}
Square 39.
x=\frac{-39±\sqrt{1521+16\left(-17\right)}}{2\left(-4\right)}
Multiply -4 times -4.
x=\frac{-39±\sqrt{1521-272}}{2\left(-4\right)}
Multiply 16 times -17.
x=\frac{-39±\sqrt{1249}}{2\left(-4\right)}
Add 1521 to -272.
x=\frac{-39±\sqrt{1249}}{-8}
Multiply 2 times -4.
x=\frac{\sqrt{1249}-39}{-8}
Now solve the equation x=\frac{-39±\sqrt{1249}}{-8} when ± is plus. Add -39 to \sqrt{1249}.
x=\frac{39-\sqrt{1249}}{8}
Divide -39+\sqrt{1249} by -8.
x=\frac{-\sqrt{1249}-39}{-8}
Now solve the equation x=\frac{-39±\sqrt{1249}}{-8} when ± is minus. Subtract \sqrt{1249} from -39.
x=\frac{\sqrt{1249}+39}{8}
Divide -39-\sqrt{1249} by -8.
x=\frac{39-\sqrt{1249}}{8} x=\frac{\sqrt{1249}+39}{8}
The equation is now solved.
\left(10x-20\right)\times 2+\left(5x+5\right)\times 3=4\left(x-2\right)\left(x+1\right)
Variable x cannot be equal to any of the values -1,2 since division by zero is not defined. Multiply both sides of the equation by 10\left(x-2\right)\left(x+1\right), the least common multiple of x+1,2\left(x-2\right),5.
20x-40+\left(5x+5\right)\times 3=4\left(x-2\right)\left(x+1\right)
Use the distributive property to multiply 10x-20 by 2.
20x-40+15x+15=4\left(x-2\right)\left(x+1\right)
Use the distributive property to multiply 5x+5 by 3.
35x-40+15=4\left(x-2\right)\left(x+1\right)
Combine 20x and 15x to get 35x.
35x-25=4\left(x-2\right)\left(x+1\right)
Add -40 and 15 to get -25.
35x-25=\left(4x-8\right)\left(x+1\right)
Use the distributive property to multiply 4 by x-2.
35x-25=4x^{2}-4x-8
Use the distributive property to multiply 4x-8 by x+1 and combine like terms.
35x-25-4x^{2}=-4x-8
Subtract 4x^{2} from both sides.
35x-25-4x^{2}+4x=-8
Add 4x to both sides.
39x-25-4x^{2}=-8
Combine 35x and 4x to get 39x.
39x-4x^{2}=-8+25
Add 25 to both sides.
39x-4x^{2}=17
Add -8 and 25 to get 17.
-4x^{2}+39x=17
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-4x^{2}+39x}{-4}=\frac{17}{-4}
Divide both sides by -4.
x^{2}+\frac{39}{-4}x=\frac{17}{-4}
Dividing by -4 undoes the multiplication by -4.
x^{2}-\frac{39}{4}x=\frac{17}{-4}
Divide 39 by -4.
x^{2}-\frac{39}{4}x=-\frac{17}{4}
Divide 17 by -4.
x^{2}-\frac{39}{4}x+\left(-\frac{39}{8}\right)^{2}=-\frac{17}{4}+\left(-\frac{39}{8}\right)^{2}
Divide -\frac{39}{4}, the coefficient of the x term, by 2 to get -\frac{39}{8}. Then add the square of -\frac{39}{8} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{39}{4}x+\frac{1521}{64}=-\frac{17}{4}+\frac{1521}{64}
Square -\frac{39}{8} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{39}{4}x+\frac{1521}{64}=\frac{1249}{64}
Add -\frac{17}{4} to \frac{1521}{64} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{39}{8}\right)^{2}=\frac{1249}{64}
Factor x^{2}-\frac{39}{4}x+\frac{1521}{64}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{39}{8}\right)^{2}}=\sqrt{\frac{1249}{64}}
Take the square root of both sides of the equation.
x-\frac{39}{8}=\frac{\sqrt{1249}}{8} x-\frac{39}{8}=-\frac{\sqrt{1249}}{8}
Simplify.
x=\frac{\sqrt{1249}+39}{8} x=\frac{39-\sqrt{1249}}{8}
Add \frac{39}{8} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}