Solve for w
w = \frac{7}{3} = 2\frac{1}{3} \approx 2.333333333
Share
Copied to clipboard
\left(w-2\right)\left(w-1\right)\times 2+\left(w-3\right)\left(w-2\right)=\left(w-3\right)\left(w-2\right)\times 5-\left(w-3\right)\left(w-1\right)\times 2
Variable w cannot be equal to any of the values 1,2,3 since division by zero is not defined. Multiply both sides of the equation by \left(w-3\right)\left(w-2\right)\left(w-1\right), the least common multiple of w-3,w-1,w-2.
\left(w^{2}-3w+2\right)\times 2+\left(w-3\right)\left(w-2\right)=\left(w-3\right)\left(w-2\right)\times 5-\left(w-3\right)\left(w-1\right)\times 2
Use the distributive property to multiply w-2 by w-1 and combine like terms.
2w^{2}-6w+4+\left(w-3\right)\left(w-2\right)=\left(w-3\right)\left(w-2\right)\times 5-\left(w-3\right)\left(w-1\right)\times 2
Use the distributive property to multiply w^{2}-3w+2 by 2.
2w^{2}-6w+4+w^{2}-5w+6=\left(w-3\right)\left(w-2\right)\times 5-\left(w-3\right)\left(w-1\right)\times 2
Use the distributive property to multiply w-3 by w-2 and combine like terms.
3w^{2}-6w+4-5w+6=\left(w-3\right)\left(w-2\right)\times 5-\left(w-3\right)\left(w-1\right)\times 2
Combine 2w^{2} and w^{2} to get 3w^{2}.
3w^{2}-11w+4+6=\left(w-3\right)\left(w-2\right)\times 5-\left(w-3\right)\left(w-1\right)\times 2
Combine -6w and -5w to get -11w.
3w^{2}-11w+10=\left(w-3\right)\left(w-2\right)\times 5-\left(w-3\right)\left(w-1\right)\times 2
Add 4 and 6 to get 10.
3w^{2}-11w+10=\left(w^{2}-5w+6\right)\times 5-\left(w-3\right)\left(w-1\right)\times 2
Use the distributive property to multiply w-3 by w-2 and combine like terms.
3w^{2}-11w+10=5w^{2}-25w+30-\left(w-3\right)\left(w-1\right)\times 2
Use the distributive property to multiply w^{2}-5w+6 by 5.
3w^{2}-11w+10=5w^{2}-25w+30-\left(w^{2}-4w+3\right)\times 2
Use the distributive property to multiply w-3 by w-1 and combine like terms.
3w^{2}-11w+10=5w^{2}-25w+30-\left(2w^{2}-8w+6\right)
Use the distributive property to multiply w^{2}-4w+3 by 2.
3w^{2}-11w+10=5w^{2}-25w+30-2w^{2}+8w-6
To find the opposite of 2w^{2}-8w+6, find the opposite of each term.
3w^{2}-11w+10=3w^{2}-25w+30+8w-6
Combine 5w^{2} and -2w^{2} to get 3w^{2}.
3w^{2}-11w+10=3w^{2}-17w+30-6
Combine -25w and 8w to get -17w.
3w^{2}-11w+10=3w^{2}-17w+24
Subtract 6 from 30 to get 24.
3w^{2}-11w+10-3w^{2}=-17w+24
Subtract 3w^{2} from both sides.
-11w+10=-17w+24
Combine 3w^{2} and -3w^{2} to get 0.
-11w+10+17w=24
Add 17w to both sides.
6w+10=24
Combine -11w and 17w to get 6w.
6w=24-10
Subtract 10 from both sides.
6w=14
Subtract 10 from 24 to get 14.
w=\frac{14}{6}
Divide both sides by 6.
w=\frac{7}{3}
Reduce the fraction \frac{14}{6} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}