Skip to main content
Solve for w
Tick mark Image

Similar Problems from Web Search

Share

2=\frac{1}{4}w\left(3^{\frac{1}{2}}-i\right)\left(1+i\right)
Variable w cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by w.
2=\left(\frac{1}{4}\times 1+\frac{1}{4}i\right)w\left(3^{\frac{1}{2}}-i\right)
Multiply \frac{1}{4} times 1+i.
2=\left(\frac{1}{4}+\frac{1}{4}i\right)w\left(3^{\frac{1}{2}}-i\right)
Do the multiplications in \frac{1}{4}\times 1+\frac{1}{4}i.
2=\left(\frac{1}{4}+\frac{1}{4}i\right)w\times 3^{\frac{1}{2}}+\left(\frac{1}{4}-\frac{1}{4}i\right)w
Use the distributive property to multiply \left(\frac{1}{4}+\frac{1}{4}i\right)w by 3^{\frac{1}{2}}-i.
\left(\frac{1}{4}+\frac{1}{4}i\right)w\times 3^{\frac{1}{2}}+\left(\frac{1}{4}-\frac{1}{4}i\right)w=2
Swap sides so that all variable terms are on the left hand side.
\sqrt{3}\left(\frac{1}{4}+\frac{1}{4}i\right)w+\left(\frac{1}{4}-\frac{1}{4}i\right)w=2
Reorder the terms.
\left(\sqrt{3}\left(\frac{1}{4}+\frac{1}{4}i\right)+\left(\frac{1}{4}-\frac{1}{4}i\right)\right)w=2
Combine all terms containing w.
\frac{\left(\sqrt{3}\left(\frac{1}{4}+\frac{1}{4}i\right)+\left(\frac{1}{4}-\frac{1}{4}i\right)\right)w}{\sqrt{3}\left(\frac{1}{4}+\frac{1}{4}i\right)+\left(\frac{1}{4}-\frac{1}{4}i\right)}=\frac{2}{\sqrt{3}\left(\frac{1}{4}+\frac{1}{4}i\right)+\left(\frac{1}{4}-\frac{1}{4}i\right)}
Divide both sides by \left(\frac{1}{4}+\frac{1}{4}i\right)\sqrt{3}+\left(\frac{1}{4}-\frac{1}{4}i\right).
w=\frac{2}{\sqrt{3}\left(\frac{1}{4}+\frac{1}{4}i\right)+\left(\frac{1}{4}-\frac{1}{4}i\right)}
Dividing by \left(\frac{1}{4}+\frac{1}{4}i\right)\sqrt{3}+\left(\frac{1}{4}-\frac{1}{4}i\right) undoes the multiplication by \left(\frac{1}{4}+\frac{1}{4}i\right)\sqrt{3}+\left(\frac{1}{4}-\frac{1}{4}i\right).
w=\frac{8}{\sqrt{3}\left(1+i\right)+\left(1-i\right)}
Divide 2 by \left(\frac{1}{4}+\frac{1}{4}i\right)\sqrt{3}+\left(\frac{1}{4}-\frac{1}{4}i\right).