Solve for w
w=-\frac{8}{\sqrt{3}\left(-1-i\right)+\left(-1+i\right)}\approx 2.732050808-0.732050808i
Share
Copied to clipboard
2=\frac{1}{4}w\left(3^{\frac{1}{2}}-i\right)\left(1+i\right)
Variable w cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by w.
2=\left(\frac{1}{4}\times 1+\frac{1}{4}i\right)w\left(3^{\frac{1}{2}}-i\right)
Multiply \frac{1}{4} times 1+i.
2=\left(\frac{1}{4}+\frac{1}{4}i\right)w\left(3^{\frac{1}{2}}-i\right)
Do the multiplications in \frac{1}{4}\times 1+\frac{1}{4}i.
2=\left(\frac{1}{4}+\frac{1}{4}i\right)w\times 3^{\frac{1}{2}}+\left(\frac{1}{4}-\frac{1}{4}i\right)w
Use the distributive property to multiply \left(\frac{1}{4}+\frac{1}{4}i\right)w by 3^{\frac{1}{2}}-i.
\left(\frac{1}{4}+\frac{1}{4}i\right)w\times 3^{\frac{1}{2}}+\left(\frac{1}{4}-\frac{1}{4}i\right)w=2
Swap sides so that all variable terms are on the left hand side.
\sqrt{3}\left(\frac{1}{4}+\frac{1}{4}i\right)w+\left(\frac{1}{4}-\frac{1}{4}i\right)w=2
Reorder the terms.
\left(\sqrt{3}\left(\frac{1}{4}+\frac{1}{4}i\right)+\left(\frac{1}{4}-\frac{1}{4}i\right)\right)w=2
Combine all terms containing w.
\frac{\left(\sqrt{3}\left(\frac{1}{4}+\frac{1}{4}i\right)+\left(\frac{1}{4}-\frac{1}{4}i\right)\right)w}{\sqrt{3}\left(\frac{1}{4}+\frac{1}{4}i\right)+\left(\frac{1}{4}-\frac{1}{4}i\right)}=\frac{2}{\sqrt{3}\left(\frac{1}{4}+\frac{1}{4}i\right)+\left(\frac{1}{4}-\frac{1}{4}i\right)}
Divide both sides by \left(\frac{1}{4}+\frac{1}{4}i\right)\sqrt{3}+\left(\frac{1}{4}-\frac{1}{4}i\right).
w=\frac{2}{\sqrt{3}\left(\frac{1}{4}+\frac{1}{4}i\right)+\left(\frac{1}{4}-\frac{1}{4}i\right)}
Dividing by \left(\frac{1}{4}+\frac{1}{4}i\right)\sqrt{3}+\left(\frac{1}{4}-\frac{1}{4}i\right) undoes the multiplication by \left(\frac{1}{4}+\frac{1}{4}i\right)\sqrt{3}+\left(\frac{1}{4}-\frac{1}{4}i\right).
w=\frac{8}{\sqrt{3}\left(1+i\right)+\left(1-i\right)}
Divide 2 by \left(\frac{1}{4}+\frac{1}{4}i\right)\sqrt{3}+\left(\frac{1}{4}-\frac{1}{4}i\right).
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}