Solve for u
u = \frac{27}{4} = 6\frac{3}{4} = 6.75
Share
Copied to clipboard
2\times 2=-3+2\left(u-5\right)\times 2
Variable u cannot be equal to 5 since division by zero is not defined. Multiply both sides of the equation by 2\left(u-5\right), the least common multiple of u-5,2u-10.
4=-3+2\left(u-5\right)\times 2
Multiply 2 and 2 to get 4.
4=-3+4\left(u-5\right)
Multiply 2 and 2 to get 4.
4=-3+4u-20
Use the distributive property to multiply 4 by u-5.
4=-23+4u
Subtract 20 from -3 to get -23.
-23+4u=4
Swap sides so that all variable terms are on the left hand side.
4u=4+23
Add 23 to both sides.
4u=27
Add 4 and 23 to get 27.
u=\frac{27}{4}
Divide both sides by 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}