Solve for s
s=-35
Share
Copied to clipboard
\left(5s+4\right)\times 2=\left(s-3\right)\times 9
Variable s cannot be equal to any of the values -\frac{4}{5},3 since division by zero is not defined. Multiply both sides of the equation by \left(s-3\right)\left(5s+4\right), the least common multiple of s-3,5s+4.
10s+8=\left(s-3\right)\times 9
Use the distributive property to multiply 5s+4 by 2.
10s+8=9s-27
Use the distributive property to multiply s-3 by 9.
10s+8-9s=-27
Subtract 9s from both sides.
s+8=-27
Combine 10s and -9s to get s.
s=-27-8
Subtract 8 from both sides.
s=-35
Subtract 8 from -27 to get -35.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}