Solve for p
p=\frac{7qr}{2q+r}
q\neq 0\text{ and }r\neq 0\text{ and }r\neq -2q
Solve for q
q=-\frac{pr}{2p-7r}
p\neq 0\text{ and }r\neq 0\text{ and }r\neq \frac{2p}{7}
Share
Copied to clipboard
pq\times 2=qr\times 7-pr
Variable p cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by pqr, the least common multiple of r,p,q.
pq\times 2+pr=qr\times 7
Add pr to both sides.
\left(q\times 2+r\right)p=qr\times 7
Combine all terms containing p.
\left(2q+r\right)p=7qr
The equation is in standard form.
\frac{\left(2q+r\right)p}{2q+r}=\frac{7qr}{2q+r}
Divide both sides by 2q+r.
p=\frac{7qr}{2q+r}
Dividing by 2q+r undoes the multiplication by 2q+r.
p=\frac{7qr}{2q+r}\text{, }p\neq 0
Variable p cannot be equal to 0.
pq\times 2=qr\times 7-pr
Variable q cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by pqr, the least common multiple of r,p,q.
pq\times 2-qr\times 7=-pr
Subtract qr\times 7 from both sides.
pq\times 2-7qr=-pr
Multiply -1 and 7 to get -7.
\left(p\times 2-7r\right)q=-pr
Combine all terms containing q.
\left(2p-7r\right)q=-pr
The equation is in standard form.
\frac{\left(2p-7r\right)q}{2p-7r}=-\frac{pr}{2p-7r}
Divide both sides by 2p-7r.
q=-\frac{pr}{2p-7r}
Dividing by 2p-7r undoes the multiplication by 2p-7r.
q=-\frac{pr}{2p-7r}\text{, }q\neq 0
Variable q cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}