Evaluate
\frac{p+5q}{\left(p-q\right)\left(2p+q\right)}
Differentiate w.r.t. p
\frac{2\left(2q^{2}-10pq-p^{2}\right)}{\left(\left(p-q\right)\left(2p+q\right)\right)^{2}}
Share
Copied to clipboard
\frac{2\left(2p+q\right)}{\left(p-q\right)\left(2p+q\right)}-\frac{3\left(p-q\right)}{\left(p-q\right)\left(2p+q\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of p-q and 2p+q is \left(p-q\right)\left(2p+q\right). Multiply \frac{2}{p-q} times \frac{2p+q}{2p+q}. Multiply \frac{3}{2p+q} times \frac{p-q}{p-q}.
\frac{2\left(2p+q\right)-3\left(p-q\right)}{\left(p-q\right)\left(2p+q\right)}
Since \frac{2\left(2p+q\right)}{\left(p-q\right)\left(2p+q\right)} and \frac{3\left(p-q\right)}{\left(p-q\right)\left(2p+q\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{4p+2q-3p+3q}{\left(p-q\right)\left(2p+q\right)}
Do the multiplications in 2\left(2p+q\right)-3\left(p-q\right).
\frac{p+5q}{\left(p-q\right)\left(2p+q\right)}
Combine like terms in 4p+2q-3p+3q.
\frac{p+5q}{2p^{2}-pq-q^{2}}
Expand \left(p-q\right)\left(2p+q\right).
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}