Solve for n
n=\frac{2x+5}{3}
x\neq 2
Solve for x
x=\frac{3n-5}{2}
n\neq 3
Graph
Share
Copied to clipboard
\left(x-2\right)\times 2=\left(n-3\right)\times 3
Variable n cannot be equal to 3 since division by zero is not defined. Multiply both sides of the equation by \left(n-3\right)\left(x-2\right), the least common multiple of n-3,x-2.
2x-4=\left(n-3\right)\times 3
Use the distributive property to multiply x-2 by 2.
2x-4=3n-9
Use the distributive property to multiply n-3 by 3.
3n-9=2x-4
Swap sides so that all variable terms are on the left hand side.
3n=2x-4+9
Add 9 to both sides.
3n=2x+5
Add -4 and 9 to get 5.
\frac{3n}{3}=\frac{2x+5}{3}
Divide both sides by 3.
n=\frac{2x+5}{3}
Dividing by 3 undoes the multiplication by 3.
n=\frac{2x+5}{3}\text{, }n\neq 3
Variable n cannot be equal to 3.
\left(x-2\right)\times 2=\left(n-3\right)\times 3
Variable x cannot be equal to 2 since division by zero is not defined. Multiply both sides of the equation by \left(n-3\right)\left(x-2\right), the least common multiple of n-3,x-2.
2x-4=\left(n-3\right)\times 3
Use the distributive property to multiply x-2 by 2.
2x-4=3n-9
Use the distributive property to multiply n-3 by 3.
2x=3n-9+4
Add 4 to both sides.
2x=3n-5
Add -9 and 4 to get -5.
\frac{2x}{2}=\frac{3n-5}{2}
Divide both sides by 2.
x=\frac{3n-5}{2}
Dividing by 2 undoes the multiplication by 2.
x=\frac{3n-5}{2}\text{, }x\neq 2
Variable x cannot be equal to 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}