Solve for x
x=\frac{2n^{2}+7n+8}{2\left(n+4\right)}
n\neq -2\text{ and }n\neq -1\text{ and }n\neq -4
Solve for n (complex solution)
n=\frac{\sqrt{4x^{2}+36x-15}}{4}+\frac{x}{2}-\frac{7}{4}
n=-\frac{\sqrt{4x^{2}+36x-15}}{4}+\frac{x}{2}-\frac{7}{4}\text{, }x\neq \frac{1}{2}
Solve for n
n=\frac{\sqrt{4x^{2}+36x-15}}{4}+\frac{x}{2}-\frac{7}{4}
n=-\frac{\sqrt{4x^{2}+36x-15}}{4}+\frac{x}{2}-\frac{7}{4}\text{, }x\leq -2\sqrt{6}-\frac{9}{2}\text{ or }\left(x\neq \frac{1}{2}\text{ and }x\geq 2\sqrt{6}-\frac{9}{2}\right)
Graph
Share
Copied to clipboard
\left(2x-1\right)\left(n+1\right)\times 2+\left(n+1\right)\left(n+2\right)\times 2=\left(2x-1\right)\left(n+2\right)\times 3
Variable x cannot be equal to \frac{1}{2} since division by zero is not defined. Multiply both sides of the equation by \left(2x-1\right)\left(n+1\right)\left(n+2\right), the least common multiple of n+2,2x-1,n+1.
\left(2xn+2x-n-1\right)\times 2+\left(n+1\right)\left(n+2\right)\times 2=\left(2x-1\right)\left(n+2\right)\times 3
Use the distributive property to multiply 2x-1 by n+1.
4nx+4x-2n-2+\left(n+1\right)\left(n+2\right)\times 2=\left(2x-1\right)\left(n+2\right)\times 3
Use the distributive property to multiply 2xn+2x-n-1 by 2.
4nx+4x-2n-2+\left(n^{2}+3n+2\right)\times 2=\left(2x-1\right)\left(n+2\right)\times 3
Use the distributive property to multiply n+1 by n+2 and combine like terms.
4nx+4x-2n-2+2n^{2}+6n+4=\left(2x-1\right)\left(n+2\right)\times 3
Use the distributive property to multiply n^{2}+3n+2 by 2.
4nx+4x+4n-2+2n^{2}+4=\left(2x-1\right)\left(n+2\right)\times 3
Combine -2n and 6n to get 4n.
4nx+4x+4n+2+2n^{2}=\left(2x-1\right)\left(n+2\right)\times 3
Add -2 and 4 to get 2.
4nx+4x+4n+2+2n^{2}=\left(2xn+4x-n-2\right)\times 3
Use the distributive property to multiply 2x-1 by n+2.
4nx+4x+4n+2+2n^{2}=6nx+12x-3n-6
Use the distributive property to multiply 2xn+4x-n-2 by 3.
4nx+4x+4n+2+2n^{2}-6nx=12x-3n-6
Subtract 6nx from both sides.
-2nx+4x+4n+2+2n^{2}=12x-3n-6
Combine 4nx and -6nx to get -2nx.
-2nx+4x+4n+2+2n^{2}-12x=-3n-6
Subtract 12x from both sides.
-2nx-8x+4n+2+2n^{2}=-3n-6
Combine 4x and -12x to get -8x.
-2nx-8x+2+2n^{2}=-3n-6-4n
Subtract 4n from both sides.
-2nx-8x+2+2n^{2}=-7n-6
Combine -3n and -4n to get -7n.
-2nx-8x+2n^{2}=-7n-6-2
Subtract 2 from both sides.
-2nx-8x+2n^{2}=-7n-8
Subtract 2 from -6 to get -8.
-2nx-8x=-7n-8-2n^{2}
Subtract 2n^{2} from both sides.
\left(-2n-8\right)x=-7n-8-2n^{2}
Combine all terms containing x.
\left(-2n-8\right)x=-2n^{2}-7n-8
The equation is in standard form.
\frac{\left(-2n-8\right)x}{-2n-8}=\frac{-2n^{2}-7n-8}{-2n-8}
Divide both sides by -2n-8.
x=\frac{-2n^{2}-7n-8}{-2n-8}
Dividing by -2n-8 undoes the multiplication by -2n-8.
x=\frac{2n^{2}+7n+8}{2\left(n+4\right)}
Divide -8-7n-2n^{2} by -2n-8.
x=\frac{2n^{2}+7n+8}{2\left(n+4\right)}\text{, }x\neq \frac{1}{2}
Variable x cannot be equal to \frac{1}{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}