Solve for n
n = -\frac{23}{11} = -2\frac{1}{11} \approx -2.090909091
n=4
Share
Copied to clipboard
10n\left(n-2\right)\times 2+5n\left(n+1\right)\times 3=2\left(n-2\right)\left(n+1\right)\times 23
Variable n cannot be equal to any of the values -1,0,2 since division by zero is not defined. Multiply both sides of the equation by 10n\left(n-2\right)\left(n+1\right), the least common multiple of n+1,2\left(n-2\right),5n.
\left(10n^{2}-20n\right)\times 2+5n\left(n+1\right)\times 3=2\left(n-2\right)\left(n+1\right)\times 23
Use the distributive property to multiply 10n by n-2.
20n^{2}-40n+5n\left(n+1\right)\times 3=2\left(n-2\right)\left(n+1\right)\times 23
Use the distributive property to multiply 10n^{2}-20n by 2.
20n^{2}-40n+15n\left(n+1\right)=2\left(n-2\right)\left(n+1\right)\times 23
Multiply 5 and 3 to get 15.
20n^{2}-40n+15n^{2}+15n=2\left(n-2\right)\left(n+1\right)\times 23
Use the distributive property to multiply 15n by n+1.
35n^{2}-40n+15n=2\left(n-2\right)\left(n+1\right)\times 23
Combine 20n^{2} and 15n^{2} to get 35n^{2}.
35n^{2}-25n=2\left(n-2\right)\left(n+1\right)\times 23
Combine -40n and 15n to get -25n.
35n^{2}-25n=46\left(n-2\right)\left(n+1\right)
Multiply 2 and 23 to get 46.
35n^{2}-25n=\left(46n-92\right)\left(n+1\right)
Use the distributive property to multiply 46 by n-2.
35n^{2}-25n=46n^{2}-46n-92
Use the distributive property to multiply 46n-92 by n+1 and combine like terms.
35n^{2}-25n-46n^{2}=-46n-92
Subtract 46n^{2} from both sides.
-11n^{2}-25n=-46n-92
Combine 35n^{2} and -46n^{2} to get -11n^{2}.
-11n^{2}-25n+46n=-92
Add 46n to both sides.
-11n^{2}+21n=-92
Combine -25n and 46n to get 21n.
-11n^{2}+21n+92=0
Add 92 to both sides.
n=\frac{-21±\sqrt{21^{2}-4\left(-11\right)\times 92}}{2\left(-11\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -11 for a, 21 for b, and 92 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
n=\frac{-21±\sqrt{441-4\left(-11\right)\times 92}}{2\left(-11\right)}
Square 21.
n=\frac{-21±\sqrt{441+44\times 92}}{2\left(-11\right)}
Multiply -4 times -11.
n=\frac{-21±\sqrt{441+4048}}{2\left(-11\right)}
Multiply 44 times 92.
n=\frac{-21±\sqrt{4489}}{2\left(-11\right)}
Add 441 to 4048.
n=\frac{-21±67}{2\left(-11\right)}
Take the square root of 4489.
n=\frac{-21±67}{-22}
Multiply 2 times -11.
n=\frac{46}{-22}
Now solve the equation n=\frac{-21±67}{-22} when ± is plus. Add -21 to 67.
n=-\frac{23}{11}
Reduce the fraction \frac{46}{-22} to lowest terms by extracting and canceling out 2.
n=-\frac{88}{-22}
Now solve the equation n=\frac{-21±67}{-22} when ± is minus. Subtract 67 from -21.
n=4
Divide -88 by -22.
n=-\frac{23}{11} n=4
The equation is now solved.
10n\left(n-2\right)\times 2+5n\left(n+1\right)\times 3=2\left(n-2\right)\left(n+1\right)\times 23
Variable n cannot be equal to any of the values -1,0,2 since division by zero is not defined. Multiply both sides of the equation by 10n\left(n-2\right)\left(n+1\right), the least common multiple of n+1,2\left(n-2\right),5n.
\left(10n^{2}-20n\right)\times 2+5n\left(n+1\right)\times 3=2\left(n-2\right)\left(n+1\right)\times 23
Use the distributive property to multiply 10n by n-2.
20n^{2}-40n+5n\left(n+1\right)\times 3=2\left(n-2\right)\left(n+1\right)\times 23
Use the distributive property to multiply 10n^{2}-20n by 2.
20n^{2}-40n+15n\left(n+1\right)=2\left(n-2\right)\left(n+1\right)\times 23
Multiply 5 and 3 to get 15.
20n^{2}-40n+15n^{2}+15n=2\left(n-2\right)\left(n+1\right)\times 23
Use the distributive property to multiply 15n by n+1.
35n^{2}-40n+15n=2\left(n-2\right)\left(n+1\right)\times 23
Combine 20n^{2} and 15n^{2} to get 35n^{2}.
35n^{2}-25n=2\left(n-2\right)\left(n+1\right)\times 23
Combine -40n and 15n to get -25n.
35n^{2}-25n=46\left(n-2\right)\left(n+1\right)
Multiply 2 and 23 to get 46.
35n^{2}-25n=\left(46n-92\right)\left(n+1\right)
Use the distributive property to multiply 46 by n-2.
35n^{2}-25n=46n^{2}-46n-92
Use the distributive property to multiply 46n-92 by n+1 and combine like terms.
35n^{2}-25n-46n^{2}=-46n-92
Subtract 46n^{2} from both sides.
-11n^{2}-25n=-46n-92
Combine 35n^{2} and -46n^{2} to get -11n^{2}.
-11n^{2}-25n+46n=-92
Add 46n to both sides.
-11n^{2}+21n=-92
Combine -25n and 46n to get 21n.
\frac{-11n^{2}+21n}{-11}=-\frac{92}{-11}
Divide both sides by -11.
n^{2}+\frac{21}{-11}n=-\frac{92}{-11}
Dividing by -11 undoes the multiplication by -11.
n^{2}-\frac{21}{11}n=-\frac{92}{-11}
Divide 21 by -11.
n^{2}-\frac{21}{11}n=\frac{92}{11}
Divide -92 by -11.
n^{2}-\frac{21}{11}n+\left(-\frac{21}{22}\right)^{2}=\frac{92}{11}+\left(-\frac{21}{22}\right)^{2}
Divide -\frac{21}{11}, the coefficient of the x term, by 2 to get -\frac{21}{22}. Then add the square of -\frac{21}{22} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
n^{2}-\frac{21}{11}n+\frac{441}{484}=\frac{92}{11}+\frac{441}{484}
Square -\frac{21}{22} by squaring both the numerator and the denominator of the fraction.
n^{2}-\frac{21}{11}n+\frac{441}{484}=\frac{4489}{484}
Add \frac{92}{11} to \frac{441}{484} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(n-\frac{21}{22}\right)^{2}=\frac{4489}{484}
Factor n^{2}-\frac{21}{11}n+\frac{441}{484}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(n-\frac{21}{22}\right)^{2}}=\sqrt{\frac{4489}{484}}
Take the square root of both sides of the equation.
n-\frac{21}{22}=\frac{67}{22} n-\frac{21}{22}=-\frac{67}{22}
Simplify.
n=4 n=-\frac{23}{11}
Add \frac{21}{22} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}