Solve for a
a=-b+\frac{6}{c}
c\neq 0
Solve for b
b=-a+\frac{6}{c}
c\neq 0
Share
Copied to clipboard
3\times 2=ca+cb
Multiply both sides of the equation by 3c, the least common multiple of c,3.
6=ca+cb
Multiply 3 and 2 to get 6.
ca+cb=6
Swap sides so that all variable terms are on the left hand side.
ca=6-cb
Subtract cb from both sides.
ca=6-bc
The equation is in standard form.
\frac{ca}{c}=\frac{6-bc}{c}
Divide both sides by c.
a=\frac{6-bc}{c}
Dividing by c undoes the multiplication by c.
a=-b+\frac{6}{c}
Divide 6-cb by c.
3\times 2=ca+cb
Multiply both sides of the equation by 3c, the least common multiple of c,3.
6=ca+cb
Multiply 3 and 2 to get 6.
ca+cb=6
Swap sides so that all variable terms are on the left hand side.
cb=6-ca
Subtract ca from both sides.
cb=6-ac
The equation is in standard form.
\frac{cb}{c}=\frac{6-ac}{c}
Divide both sides by c.
b=\frac{6-ac}{c}
Dividing by c undoes the multiplication by c.
b=-a+\frac{6}{c}
Divide 6-ca by c.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}