Solve for a_4
a_{4}=\frac{x}{49}
x\neq 0
Solve for x
x=49a_{4}
a_{4}\neq 0
Graph
Share
Copied to clipboard
x\times 2=a_{4}\left(2+32+4\times 16\right)
Variable a_{4} cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by a_{4}x, the least common multiple of a_{4},x.
x\times 2=a_{4}\left(34+4\times 16\right)
Add 2 and 32 to get 34.
x\times 2=a_{4}\left(34+64\right)
Multiply 4 and 16 to get 64.
x\times 2=a_{4}\times 98
Add 34 and 64 to get 98.
a_{4}\times 98=x\times 2
Swap sides so that all variable terms are on the left hand side.
98a_{4}=2x
The equation is in standard form.
\frac{98a_{4}}{98}=\frac{2x}{98}
Divide both sides by 98.
a_{4}=\frac{2x}{98}
Dividing by 98 undoes the multiplication by 98.
a_{4}=\frac{x}{49}
Divide 2x by 98.
a_{4}=\frac{x}{49}\text{, }a_{4}\neq 0
Variable a_{4} cannot be equal to 0.
x\times 2=a_{4}\left(2+32+4\times 16\right)
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by a_{4}x, the least common multiple of a_{4},x.
x\times 2=a_{4}\left(34+4\times 16\right)
Add 2 and 32 to get 34.
x\times 2=a_{4}\left(34+64\right)
Multiply 4 and 16 to get 64.
x\times 2=a_{4}\times 98
Add 34 and 64 to get 98.
2x=98a_{4}
The equation is in standard form.
\frac{2x}{2}=\frac{98a_{4}}{2}
Divide both sides by 2.
x=\frac{98a_{4}}{2}
Dividing by 2 undoes the multiplication by 2.
x=49a_{4}
Divide 98a_{4} by 2.
x=49a_{4}\text{, }x\neq 0
Variable x cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}