Evaluate
\frac{5-2a}{2-a}
Expand
\frac{5-2a}{2-a}
Share
Copied to clipboard
\frac{2+2a-4}{a-1}+\frac{1}{2-a}
Since \frac{2}{a-1} and \frac{2a-4}{a-1} have the same denominator, add them by adding their numerators.
\frac{-2+2a}{a-1}+\frac{1}{2-a}
Combine like terms in 2+2a-4.
\frac{2\left(a-1\right)}{a-1}+\frac{1}{2-a}
Factor the expressions that are not already factored in \frac{-2+2a}{a-1}.
2+\frac{1}{2-a}
Cancel out a-1 in both numerator and denominator.
\frac{2\left(2-a\right)}{2-a}+\frac{1}{2-a}
To add or subtract expressions, expand them to make their denominators the same. Multiply 2 times \frac{2-a}{2-a}.
\frac{2\left(2-a\right)+1}{2-a}
Since \frac{2\left(2-a\right)}{2-a} and \frac{1}{2-a} have the same denominator, add them by adding their numerators.
\frac{4-2a+1}{2-a}
Do the multiplications in 2\left(2-a\right)+1.
\frac{5-2a}{2-a}
Combine like terms in 4-2a+1.
\frac{2+2a-4}{a-1}+\frac{1}{2-a}
Since \frac{2}{a-1} and \frac{2a-4}{a-1} have the same denominator, add them by adding their numerators.
\frac{-2+2a}{a-1}+\frac{1}{2-a}
Combine like terms in 2+2a-4.
\frac{2\left(a-1\right)}{a-1}+\frac{1}{2-a}
Factor the expressions that are not already factored in \frac{-2+2a}{a-1}.
2+\frac{1}{2-a}
Cancel out a-1 in both numerator and denominator.
\frac{2\left(2-a\right)}{2-a}+\frac{1}{2-a}
To add or subtract expressions, expand them to make their denominators the same. Multiply 2 times \frac{2-a}{2-a}.
\frac{2\left(2-a\right)+1}{2-a}
Since \frac{2\left(2-a\right)}{2-a} and \frac{1}{2-a} have the same denominator, add them by adding their numerators.
\frac{4-2a+1}{2-a}
Do the multiplications in 2\left(2-a\right)+1.
\frac{5-2a}{2-a}
Combine like terms in 4-2a+1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}