Solve for a
a=\frac{2}{c}
c\neq 0
Solve for c
c=\frac{2}{a}
a\neq 0
Share
Copied to clipboard
c\times 2\times \frac{2}{c}=2ac
Variable a cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by ac, the least common multiple of a,c.
\frac{c\times 2}{c}\times 2=2ac
Express c\times \frac{2}{c} as a single fraction.
2\times 2=2ac
Cancel out c in both numerator and denominator.
4=2ac
Multiply 2 and 2 to get 4.
2ac=4
Swap sides so that all variable terms are on the left hand side.
2ca=4
The equation is in standard form.
\frac{2ca}{2c}=\frac{4}{2c}
Divide both sides by 2c.
a=\frac{4}{2c}
Dividing by 2c undoes the multiplication by 2c.
a=\frac{2}{c}
Divide 4 by 2c.
a=\frac{2}{c}\text{, }a\neq 0
Variable a cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}