Solve for a
a=-\frac{2b\left(b+2\right)}{2-3b}
b\neq -2\text{ and }b\neq 0\text{ and }b\neq \frac{2}{3}
Solve for b
b=\frac{\sqrt{\left(a-4\right)\left(9a-4\right)}+3a-4}{4}
b=\frac{-\sqrt{\left(a-4\right)\left(9a-4\right)}+3a-4}{4}\text{, }a\geq 4\text{ or }\left(a\neq 0\text{ and }a\leq \frac{4}{9}\right)
Share
Copied to clipboard
2b\left(b+2\right)\times 2+2a\left(b+2\right)=ab\times 8
Variable a cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 2ab\left(b+2\right), the least common multiple of a,b,4+2b.
\left(2b^{2}+4b\right)\times 2+2a\left(b+2\right)=ab\times 8
Use the distributive property to multiply 2b by b+2.
4b^{2}+8b+2a\left(b+2\right)=ab\times 8
Use the distributive property to multiply 2b^{2}+4b by 2.
4b^{2}+8b+2ab+4a=ab\times 8
Use the distributive property to multiply 2a by b+2.
4b^{2}+8b+2ab+4a-ab\times 8=0
Subtract ab\times 8 from both sides.
4b^{2}+8b-6ab+4a=0
Combine 2ab and -ab\times 8 to get -6ab.
8b-6ab+4a=-4b^{2}
Subtract 4b^{2} from both sides. Anything subtracted from zero gives its negation.
-6ab+4a=-4b^{2}-8b
Subtract 8b from both sides.
\left(-6b+4\right)a=-4b^{2}-8b
Combine all terms containing a.
\left(4-6b\right)a=-4b^{2}-8b
The equation is in standard form.
\frac{\left(4-6b\right)a}{4-6b}=-\frac{4b\left(b+2\right)}{4-6b}
Divide both sides by -6b+4.
a=-\frac{4b\left(b+2\right)}{4-6b}
Dividing by -6b+4 undoes the multiplication by -6b+4.
a=-\frac{2b\left(b+2\right)}{2-3b}
Divide -4b\left(2+b\right) by -6b+4.
a=-\frac{2b\left(b+2\right)}{2-3b}\text{, }a\neq 0
Variable a cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}