Evaluate
-2+\frac{2}{a}
Factor
-\frac{2\left(a-1\right)}{a}
Share
Copied to clipboard
\frac{2}{a\left(a+1\right)}-\frac{2a}{1+a}
Factor a+a^{2}.
\frac{2}{a\left(a+1\right)}-\frac{2aa}{a\left(a+1\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of a\left(a+1\right) and 1+a is a\left(a+1\right). Multiply \frac{2a}{1+a} times \frac{a}{a}.
\frac{2-2aa}{a\left(a+1\right)}
Since \frac{2}{a\left(a+1\right)} and \frac{2aa}{a\left(a+1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{2-2a^{2}}{a\left(a+1\right)}
Do the multiplications in 2-2aa.
\frac{2\left(a-1\right)\left(-a-1\right)}{a\left(a+1\right)}
Factor the expressions that are not already factored in \frac{2-2a^{2}}{a\left(a+1\right)}.
\frac{-2\left(a-1\right)\left(a+1\right)}{a\left(a+1\right)}
Extract the negative sign in -1-a.
\frac{-2\left(a-1\right)}{a}
Cancel out a+1 in both numerator and denominator.
\frac{-2a+2}{a}
Use the distributive property to multiply -2 by a-1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}