Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{2}{a+3}-\frac{a+1}{\left(a-2\right)\left(a+2\right)}-\frac{a+2}{\left(a-2\right)\left(a+3\right)}
Factor a^{2}-4.
\frac{2\left(a-2\right)\left(a+2\right)}{\left(a-2\right)\left(a+2\right)\left(a+3\right)}-\frac{\left(a+1\right)\left(a+3\right)}{\left(a-2\right)\left(a+2\right)\left(a+3\right)}-\frac{a+2}{\left(a-2\right)\left(a+3\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of a+3 and \left(a-2\right)\left(a+2\right) is \left(a-2\right)\left(a+2\right)\left(a+3\right). Multiply \frac{2}{a+3} times \frac{\left(a-2\right)\left(a+2\right)}{\left(a-2\right)\left(a+2\right)}. Multiply \frac{a+1}{\left(a-2\right)\left(a+2\right)} times \frac{a+3}{a+3}.
\frac{2\left(a-2\right)\left(a+2\right)-\left(a+1\right)\left(a+3\right)}{\left(a-2\right)\left(a+2\right)\left(a+3\right)}-\frac{a+2}{\left(a-2\right)\left(a+3\right)}
Since \frac{2\left(a-2\right)\left(a+2\right)}{\left(a-2\right)\left(a+2\right)\left(a+3\right)} and \frac{\left(a+1\right)\left(a+3\right)}{\left(a-2\right)\left(a+2\right)\left(a+3\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{2a^{2}+4a-4a-8-a^{2}-3a-a-3}{\left(a-2\right)\left(a+2\right)\left(a+3\right)}-\frac{a+2}{\left(a-2\right)\left(a+3\right)}
Do the multiplications in 2\left(a-2\right)\left(a+2\right)-\left(a+1\right)\left(a+3\right).
\frac{a^{2}-4a-11}{\left(a-2\right)\left(a+2\right)\left(a+3\right)}-\frac{a+2}{\left(a-2\right)\left(a+3\right)}
Combine like terms in 2a^{2}+4a-4a-8-a^{2}-3a-a-3.
\frac{a^{2}-4a-11}{\left(a-2\right)\left(a+2\right)\left(a+3\right)}-\frac{\left(a+2\right)\left(a+2\right)}{\left(a-2\right)\left(a+2\right)\left(a+3\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(a-2\right)\left(a+2\right)\left(a+3\right) and \left(a-2\right)\left(a+3\right) is \left(a-2\right)\left(a+2\right)\left(a+3\right). Multiply \frac{a+2}{\left(a-2\right)\left(a+3\right)} times \frac{a+2}{a+2}.
\frac{a^{2}-4a-11-\left(a+2\right)\left(a+2\right)}{\left(a-2\right)\left(a+2\right)\left(a+3\right)}
Since \frac{a^{2}-4a-11}{\left(a-2\right)\left(a+2\right)\left(a+3\right)} and \frac{\left(a+2\right)\left(a+2\right)}{\left(a-2\right)\left(a+2\right)\left(a+3\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{a^{2}-4a-11-a^{2}-2a-2a-4}{\left(a-2\right)\left(a+2\right)\left(a+3\right)}
Do the multiplications in a^{2}-4a-11-\left(a+2\right)\left(a+2\right).
\frac{-8a-15}{\left(a-2\right)\left(a+2\right)\left(a+3\right)}
Combine like terms in a^{2}-4a-11-a^{2}-2a-2a-4.
\frac{-8a-15}{a^{3}+3a^{2}-4a-12}
Expand \left(a-2\right)\left(a+2\right)\left(a+3\right).
\frac{2}{a+3}-\frac{a+1}{\left(a-2\right)\left(a+2\right)}-\frac{a+2}{\left(a-2\right)\left(a+3\right)}
Factor a^{2}-4.
\frac{2\left(a-2\right)\left(a+2\right)}{\left(a-2\right)\left(a+2\right)\left(a+3\right)}-\frac{\left(a+1\right)\left(a+3\right)}{\left(a-2\right)\left(a+2\right)\left(a+3\right)}-\frac{a+2}{\left(a-2\right)\left(a+3\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of a+3 and \left(a-2\right)\left(a+2\right) is \left(a-2\right)\left(a+2\right)\left(a+3\right). Multiply \frac{2}{a+3} times \frac{\left(a-2\right)\left(a+2\right)}{\left(a-2\right)\left(a+2\right)}. Multiply \frac{a+1}{\left(a-2\right)\left(a+2\right)} times \frac{a+3}{a+3}.
\frac{2\left(a-2\right)\left(a+2\right)-\left(a+1\right)\left(a+3\right)}{\left(a-2\right)\left(a+2\right)\left(a+3\right)}-\frac{a+2}{\left(a-2\right)\left(a+3\right)}
Since \frac{2\left(a-2\right)\left(a+2\right)}{\left(a-2\right)\left(a+2\right)\left(a+3\right)} and \frac{\left(a+1\right)\left(a+3\right)}{\left(a-2\right)\left(a+2\right)\left(a+3\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{2a^{2}+4a-4a-8-a^{2}-3a-a-3}{\left(a-2\right)\left(a+2\right)\left(a+3\right)}-\frac{a+2}{\left(a-2\right)\left(a+3\right)}
Do the multiplications in 2\left(a-2\right)\left(a+2\right)-\left(a+1\right)\left(a+3\right).
\frac{a^{2}-4a-11}{\left(a-2\right)\left(a+2\right)\left(a+3\right)}-\frac{a+2}{\left(a-2\right)\left(a+3\right)}
Combine like terms in 2a^{2}+4a-4a-8-a^{2}-3a-a-3.
\frac{a^{2}-4a-11}{\left(a-2\right)\left(a+2\right)\left(a+3\right)}-\frac{\left(a+2\right)\left(a+2\right)}{\left(a-2\right)\left(a+2\right)\left(a+3\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(a-2\right)\left(a+2\right)\left(a+3\right) and \left(a-2\right)\left(a+3\right) is \left(a-2\right)\left(a+2\right)\left(a+3\right). Multiply \frac{a+2}{\left(a-2\right)\left(a+3\right)} times \frac{a+2}{a+2}.
\frac{a^{2}-4a-11-\left(a+2\right)\left(a+2\right)}{\left(a-2\right)\left(a+2\right)\left(a+3\right)}
Since \frac{a^{2}-4a-11}{\left(a-2\right)\left(a+2\right)\left(a+3\right)} and \frac{\left(a+2\right)\left(a+2\right)}{\left(a-2\right)\left(a+2\right)\left(a+3\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{a^{2}-4a-11-a^{2}-2a-2a-4}{\left(a-2\right)\left(a+2\right)\left(a+3\right)}
Do the multiplications in a^{2}-4a-11-\left(a+2\right)\left(a+2\right).
\frac{-8a-15}{\left(a-2\right)\left(a+2\right)\left(a+3\right)}
Combine like terms in a^{2}-4a-11-a^{2}-2a-2a-4.
\frac{-8a-15}{a^{3}+3a^{2}-4a-12}
Expand \left(a-2\right)\left(a+2\right)\left(a+3\right).