Evaluate
-\frac{5}{3\left(a+1\right)}
Factor
-\frac{5}{3\left(a+1\right)}
Share
Copied to clipboard
\frac{2}{a+1}+\frac{1}{3\left(a+1\right)}-\frac{4}{a+1}
Factor 3a+3.
\frac{2\times 3}{3\left(a+1\right)}+\frac{1}{3\left(a+1\right)}-\frac{4}{a+1}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of a+1 and 3\left(a+1\right) is 3\left(a+1\right). Multiply \frac{2}{a+1} times \frac{3}{3}.
\frac{2\times 3+1}{3\left(a+1\right)}-\frac{4}{a+1}
Since \frac{2\times 3}{3\left(a+1\right)} and \frac{1}{3\left(a+1\right)} have the same denominator, add them by adding their numerators.
\frac{6+1}{3\left(a+1\right)}-\frac{4}{a+1}
Do the multiplications in 2\times 3+1.
\frac{7}{3\left(a+1\right)}-\frac{4}{a+1}
Do the calculations in 6+1.
\frac{7}{3\left(a+1\right)}-\frac{4\times 3}{3\left(a+1\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 3\left(a+1\right) and a+1 is 3\left(a+1\right). Multiply \frac{4}{a+1} times \frac{3}{3}.
\frac{7-4\times 3}{3\left(a+1\right)}
Since \frac{7}{3\left(a+1\right)} and \frac{4\times 3}{3\left(a+1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{7-12}{3\left(a+1\right)}
Do the multiplications in 7-4\times 3.
\frac{-5}{3\left(a+1\right)}
Do the calculations in 7-12.
\frac{-5}{3a+3}
Expand 3\left(a+1\right).
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}