Evaluate
\frac{a-2\beta }{a^{2}-\beta ^{2}}
Differentiate w.r.t. a
\frac{-a^{2}+4a\beta -\beta ^{2}}{\left(a^{2}-\beta ^{2}\right)^{2}}
Quiz
Algebra
5 problems similar to:
\frac { 2 } { a + \beta } - \frac { a } { a ^ { 2 } - \beta ^ { 2 } }
Share
Copied to clipboard
\frac{2}{a+\beta }-\frac{a}{\left(a+\beta \right)\left(a-\beta \right)}
Factor a^{2}-\beta ^{2}.
\frac{2\left(a-\beta \right)}{\left(a+\beta \right)\left(a-\beta \right)}-\frac{a}{\left(a+\beta \right)\left(a-\beta \right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of a+\beta and \left(a+\beta \right)\left(a-\beta \right) is \left(a+\beta \right)\left(a-\beta \right). Multiply \frac{2}{a+\beta } times \frac{a-\beta }{a-\beta }.
\frac{2\left(a-\beta \right)-a}{\left(a+\beta \right)\left(a-\beta \right)}
Since \frac{2\left(a-\beta \right)}{\left(a+\beta \right)\left(a-\beta \right)} and \frac{a}{\left(a+\beta \right)\left(a-\beta \right)} have the same denominator, subtract them by subtracting their numerators.
\frac{2a-2\beta -a}{\left(a+\beta \right)\left(a-\beta \right)}
Do the multiplications in 2\left(a-\beta \right)-a.
\frac{a-2\beta }{\left(a+\beta \right)\left(a-\beta \right)}
Combine like terms in 2a-2\beta -a.
\frac{a-2\beta }{a^{2}-\beta ^{2}}
Expand \left(a+\beta \right)\left(a-\beta \right).
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}