Evaluate
\frac{\sqrt{15}+9}{33}\approx 0.390090404
Share
Copied to clipboard
\frac{2\left(9+\sqrt{15}\right)}{\left(9-\sqrt{15}\right)\left(9+\sqrt{15}\right)}
Rationalize the denominator of \frac{2}{9-\sqrt{15}} by multiplying numerator and denominator by 9+\sqrt{15}.
\frac{2\left(9+\sqrt{15}\right)}{9^{2}-\left(\sqrt{15}\right)^{2}}
Consider \left(9-\sqrt{15}\right)\left(9+\sqrt{15}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{2\left(9+\sqrt{15}\right)}{81-15}
Square 9. Square \sqrt{15}.
\frac{2\left(9+\sqrt{15}\right)}{66}
Subtract 15 from 81 to get 66.
\frac{1}{33}\left(9+\sqrt{15}\right)
Divide 2\left(9+\sqrt{15}\right) by 66 to get \frac{1}{33}\left(9+\sqrt{15}\right).
\frac{1}{33}\times 9+\frac{1}{33}\sqrt{15}
Use the distributive property to multiply \frac{1}{33} by 9+\sqrt{15}.
\frac{9}{33}+\frac{1}{33}\sqrt{15}
Multiply \frac{1}{33} and 9 to get \frac{9}{33}.
\frac{3}{11}+\frac{1}{33}\sqrt{15}
Reduce the fraction \frac{9}{33} to lowest terms by extracting and canceling out 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}