Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{2\left(9+\sqrt{15}\right)}{\left(9-\sqrt{15}\right)\left(9+\sqrt{15}\right)}
Rationalize the denominator of \frac{2}{9-\sqrt{15}} by multiplying numerator and denominator by 9+\sqrt{15}.
\frac{2\left(9+\sqrt{15}\right)}{9^{2}-\left(\sqrt{15}\right)^{2}}
Consider \left(9-\sqrt{15}\right)\left(9+\sqrt{15}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{2\left(9+\sqrt{15}\right)}{81-15}
Square 9. Square \sqrt{15}.
\frac{2\left(9+\sqrt{15}\right)}{66}
Subtract 15 from 81 to get 66.
\frac{1}{33}\left(9+\sqrt{15}\right)
Divide 2\left(9+\sqrt{15}\right) by 66 to get \frac{1}{33}\left(9+\sqrt{15}\right).
\frac{1}{33}\times 9+\frac{1}{33}\sqrt{15}
Use the distributive property to multiply \frac{1}{33} by 9+\sqrt{15}.
\frac{9}{33}+\frac{1}{33}\sqrt{15}
Multiply \frac{1}{33} and 9 to get \frac{9}{33}.
\frac{3}{11}+\frac{1}{33}\sqrt{15}
Reduce the fraction \frac{9}{33} to lowest terms by extracting and canceling out 3.