Factor
\frac{n\left(27n^{3}+2n-9\pi \right)}{9}
Evaluate
3n^{4}+\frac{2n^{2}}{9}-\pi n
Share
Copied to clipboard
\frac{2n^{2}-9\pi n+27n^{4}}{9}
Factor out \frac{1}{9}.
n\left(2n-9\pi +27n^{3}\right)
Consider 2n^{2}-9\pi n+27n^{4}. Factor out n.
\frac{n\left(2n-9\pi +27n^{3}\right)}{9}
Rewrite the complete factored expression. Polynomial 2n-9\pi +27n^{3} is not factored since it does not have any rational roots.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}