Skip to main content
Solve for a
Tick mark Image

Similar Problems from Web Search

Share

\frac{2}{9}a^{2}-2a-1=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
a=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\times \frac{2}{9}\left(-1\right)}}{2\times \frac{2}{9}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{2}{9} for a, -2 for b, and -1 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
a=\frac{-\left(-2\right)±\sqrt{4-4\times \frac{2}{9}\left(-1\right)}}{2\times \frac{2}{9}}
Square -2.
a=\frac{-\left(-2\right)±\sqrt{4-\frac{8}{9}\left(-1\right)}}{2\times \frac{2}{9}}
Multiply -4 times \frac{2}{9}.
a=\frac{-\left(-2\right)±\sqrt{4+\frac{8}{9}}}{2\times \frac{2}{9}}
Multiply -\frac{8}{9} times -1.
a=\frac{-\left(-2\right)±\sqrt{\frac{44}{9}}}{2\times \frac{2}{9}}
Add 4 to \frac{8}{9}.
a=\frac{-\left(-2\right)±\frac{2\sqrt{11}}{3}}{2\times \frac{2}{9}}
Take the square root of \frac{44}{9}.
a=\frac{2±\frac{2\sqrt{11}}{3}}{2\times \frac{2}{9}}
The opposite of -2 is 2.
a=\frac{2±\frac{2\sqrt{11}}{3}}{\frac{4}{9}}
Multiply 2 times \frac{2}{9}.
a=\frac{\frac{2\sqrt{11}}{3}+2}{\frac{4}{9}}
Now solve the equation a=\frac{2±\frac{2\sqrt{11}}{3}}{\frac{4}{9}} when ± is plus. Add 2 to \frac{2\sqrt{11}}{3}.
a=\frac{3\sqrt{11}+9}{2}
Divide 2+\frac{2\sqrt{11}}{3} by \frac{4}{9} by multiplying 2+\frac{2\sqrt{11}}{3} by the reciprocal of \frac{4}{9}.
a=\frac{-\frac{2\sqrt{11}}{3}+2}{\frac{4}{9}}
Now solve the equation a=\frac{2±\frac{2\sqrt{11}}{3}}{\frac{4}{9}} when ± is minus. Subtract \frac{2\sqrt{11}}{3} from 2.
a=\frac{9-3\sqrt{11}}{2}
Divide 2-\frac{2\sqrt{11}}{3} by \frac{4}{9} by multiplying 2-\frac{2\sqrt{11}}{3} by the reciprocal of \frac{4}{9}.
a=\frac{3\sqrt{11}+9}{2} a=\frac{9-3\sqrt{11}}{2}
The equation is now solved.
\frac{2}{9}a^{2}-2a-1=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{2}{9}a^{2}-2a-1-\left(-1\right)=-\left(-1\right)
Add 1 to both sides of the equation.
\frac{2}{9}a^{2}-2a=-\left(-1\right)
Subtracting -1 from itself leaves 0.
\frac{2}{9}a^{2}-2a=1
Subtract -1 from 0.
\frac{\frac{2}{9}a^{2}-2a}{\frac{2}{9}}=\frac{1}{\frac{2}{9}}
Divide both sides of the equation by \frac{2}{9}, which is the same as multiplying both sides by the reciprocal of the fraction.
a^{2}+\left(-\frac{2}{\frac{2}{9}}\right)a=\frac{1}{\frac{2}{9}}
Dividing by \frac{2}{9} undoes the multiplication by \frac{2}{9}.
a^{2}-9a=\frac{1}{\frac{2}{9}}
Divide -2 by \frac{2}{9} by multiplying -2 by the reciprocal of \frac{2}{9}.
a^{2}-9a=\frac{9}{2}
Divide 1 by \frac{2}{9} by multiplying 1 by the reciprocal of \frac{2}{9}.
a^{2}-9a+\left(-\frac{9}{2}\right)^{2}=\frac{9}{2}+\left(-\frac{9}{2}\right)^{2}
Divide -9, the coefficient of the x term, by 2 to get -\frac{9}{2}. Then add the square of -\frac{9}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
a^{2}-9a+\frac{81}{4}=\frac{9}{2}+\frac{81}{4}
Square -\frac{9}{2} by squaring both the numerator and the denominator of the fraction.
a^{2}-9a+\frac{81}{4}=\frac{99}{4}
Add \frac{9}{2} to \frac{81}{4} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(a-\frac{9}{2}\right)^{2}=\frac{99}{4}
Factor a^{2}-9a+\frac{81}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(a-\frac{9}{2}\right)^{2}}=\sqrt{\frac{99}{4}}
Take the square root of both sides of the equation.
a-\frac{9}{2}=\frac{3\sqrt{11}}{2} a-\frac{9}{2}=-\frac{3\sqrt{11}}{2}
Simplify.
a=\frac{3\sqrt{11}+9}{2} a=\frac{9-3\sqrt{11}}{2}
Add \frac{9}{2} to both sides of the equation.