Verify
false
Share
Copied to clipboard
\frac{2}{9}\times \frac{3}{2}-\frac{\frac{6}{5}}{\frac{3}{2}}=2
Divide \frac{2}{9} by \frac{2}{3} by multiplying \frac{2}{9} by the reciprocal of \frac{2}{3}.
\frac{2\times 3}{9\times 2}-\frac{\frac{6}{5}}{\frac{3}{2}}=2
Multiply \frac{2}{9} times \frac{3}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{3}{9}-\frac{\frac{6}{5}}{\frac{3}{2}}=2
Cancel out 2 in both numerator and denominator.
\frac{1}{3}-\frac{\frac{6}{5}}{\frac{3}{2}}=2
Reduce the fraction \frac{3}{9} to lowest terms by extracting and canceling out 3.
\frac{1}{3}-\frac{6}{5}\times \frac{2}{3}=2
Divide \frac{6}{5} by \frac{3}{2} by multiplying \frac{6}{5} by the reciprocal of \frac{3}{2}.
\frac{1}{3}-\frac{6\times 2}{5\times 3}=2
Multiply \frac{6}{5} times \frac{2}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{1}{3}-\frac{12}{15}=2
Do the multiplications in the fraction \frac{6\times 2}{5\times 3}.
\frac{1}{3}-\frac{4}{5}=2
Reduce the fraction \frac{12}{15} to lowest terms by extracting and canceling out 3.
\frac{5}{15}-\frac{12}{15}=2
Least common multiple of 3 and 5 is 15. Convert \frac{1}{3} and \frac{4}{5} to fractions with denominator 15.
\frac{5-12}{15}=2
Since \frac{5}{15} and \frac{12}{15} have the same denominator, subtract them by subtracting their numerators.
-\frac{7}{15}=2
Subtract 12 from 5 to get -7.
-\frac{7}{15}=\frac{30}{15}
Convert 2 to fraction \frac{30}{15}.
\text{false}
Compare -\frac{7}{15} and \frac{30}{15}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}