\frac { 2 } { 9 } + 0,5 - 0,1 : \frac { 1 } { 7 } =
Evaluate
\frac{1}{45}\approx 0,022222222
Factor
\frac{1}{5 \cdot 3 ^ {2}} = 0.022222222222222223
Share
Copied to clipboard
\frac{2}{9}+\frac{1}{2}-\frac{0,1}{\frac{1}{7}}
Convert decimal number 0,5 to fraction \frac{5}{10}. Reduce the fraction \frac{5}{10} to lowest terms by extracting and canceling out 5.
\frac{4}{18}+\frac{9}{18}-\frac{0,1}{\frac{1}{7}}
Least common multiple of 9 and 2 is 18. Convert \frac{2}{9} and \frac{1}{2} to fractions with denominator 18.
\frac{4+9}{18}-\frac{0,1}{\frac{1}{7}}
Since \frac{4}{18} and \frac{9}{18} have the same denominator, add them by adding their numerators.
\frac{13}{18}-\frac{0,1}{\frac{1}{7}}
Add 4 and 9 to get 13.
\frac{13}{18}-0,1\times 7
Divide 0,1 by \frac{1}{7} by multiplying 0,1 by the reciprocal of \frac{1}{7}.
\frac{13}{18}-0,7
Multiply 0,1 and 7 to get 0,7.
\frac{13}{18}-\frac{7}{10}
Convert decimal number 0,7 to fraction \frac{7}{10}.
\frac{65}{90}-\frac{63}{90}
Least common multiple of 18 and 10 is 90. Convert \frac{13}{18} and \frac{7}{10} to fractions with denominator 90.
\frac{65-63}{90}
Since \frac{65}{90} and \frac{63}{90} have the same denominator, subtract them by subtracting their numerators.
\frac{2}{90}
Subtract 63 from 65 to get 2.
\frac{1}{45}
Reduce the fraction \frac{2}{90} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}