Verify
false
Share
Copied to clipboard
\frac{1}{4}<\frac{1}{8}+\frac{124}{24}\text{ and }\frac{1}{8}+\frac{124}{24}<\frac{3}{8}
Reduce the fraction \frac{2}{8} to lowest terms by extracting and canceling out 2.
\frac{1}{4}<\frac{1}{8}+\frac{31}{6}\text{ and }\frac{1}{8}+\frac{124}{24}<\frac{3}{8}
Reduce the fraction \frac{124}{24} to lowest terms by extracting and canceling out 4.
\frac{1}{4}<\frac{3}{24}+\frac{124}{24}\text{ and }\frac{1}{8}+\frac{124}{24}<\frac{3}{8}
Least common multiple of 8 and 6 is 24. Convert \frac{1}{8} and \frac{31}{6} to fractions with denominator 24.
\frac{1}{4}<\frac{3+124}{24}\text{ and }\frac{1}{8}+\frac{124}{24}<\frac{3}{8}
Since \frac{3}{24} and \frac{124}{24} have the same denominator, add them by adding their numerators.
\frac{1}{4}<\frac{127}{24}\text{ and }\frac{1}{8}+\frac{124}{24}<\frac{3}{8}
Add 3 and 124 to get 127.
\frac{6}{24}<\frac{127}{24}\text{ and }\frac{1}{8}+\frac{124}{24}<\frac{3}{8}
Least common multiple of 4 and 24 is 24. Convert \frac{1}{4} and \frac{127}{24} to fractions with denominator 24.
\text{true}\text{ and }\frac{1}{8}+\frac{124}{24}<\frac{3}{8}
Compare \frac{6}{24} and \frac{127}{24}.
\text{true}\text{ and }\frac{1}{8}+\frac{31}{6}<\frac{3}{8}
Reduce the fraction \frac{124}{24} to lowest terms by extracting and canceling out 4.
\text{true}\text{ and }\frac{3}{24}+\frac{124}{24}<\frac{3}{8}
Least common multiple of 8 and 6 is 24. Convert \frac{1}{8} and \frac{31}{6} to fractions with denominator 24.
\text{true}\text{ and }\frac{3+124}{24}<\frac{3}{8}
Since \frac{3}{24} and \frac{124}{24} have the same denominator, add them by adding their numerators.
\text{true}\text{ and }\frac{127}{24}<\frac{3}{8}
Add 3 and 124 to get 127.
\text{true}\text{ and }\frac{127}{24}<\frac{9}{24}
Least common multiple of 24 and 8 is 24. Convert \frac{127}{24} and \frac{3}{8} to fractions with denominator 24.
\text{true}\text{ and }\text{false}
Compare \frac{127}{24} and \frac{9}{24}.
\text{false}
The conjunction of \text{true} and \text{false} is \text{false}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}