Evaluate
\frac{12ab+8a-9b}{42\left(ab\right)^{2}}
Factor
\frac{12ab+8a-9b}{42\left(ab\right)^{2}}
Share
Copied to clipboard
\frac{2\times 2a}{14ba^{2}}-\frac{3}{14ba^{2}}+\frac{4}{21ab^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 7ab and 14a^{2}b is 14ba^{2}. Multiply \frac{2}{7ab} times \frac{2a}{2a}.
\frac{2\times 2a-3}{14ba^{2}}+\frac{4}{21ab^{2}}
Since \frac{2\times 2a}{14ba^{2}} and \frac{3}{14ba^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{4a-3}{14ba^{2}}+\frac{4}{21ab^{2}}
Do the multiplications in 2\times 2a-3.
\frac{\left(4a-3\right)\times 3b}{42a^{2}b^{2}}+\frac{4\times 2a}{42a^{2}b^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 14ba^{2} and 21ab^{2} is 42a^{2}b^{2}. Multiply \frac{4a-3}{14ba^{2}} times \frac{3b}{3b}. Multiply \frac{4}{21ab^{2}} times \frac{2a}{2a}.
\frac{\left(4a-3\right)\times 3b+4\times 2a}{42a^{2}b^{2}}
Since \frac{\left(4a-3\right)\times 3b}{42a^{2}b^{2}} and \frac{4\times 2a}{42a^{2}b^{2}} have the same denominator, add them by adding their numerators.
\frac{12ab-9b+8a}{42a^{2}b^{2}}
Do the multiplications in \left(4a-3\right)\times 3b+4\times 2a.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}