Solve for a
a=-\frac{245}{6b}
b\neq 0
Solve for b
b=-\frac{245}{6a}
a\neq 0
Share
Copied to clipboard
\frac{2}{7}a\left(-\frac{3}{5}\right)b=7
Fraction \frac{-3}{5} can be rewritten as -\frac{3}{5} by extracting the negative sign.
-\frac{6}{35}ab=7
Multiply \frac{2}{7} and -\frac{3}{5} to get -\frac{6}{35}.
\left(-\frac{6b}{35}\right)a=7
The equation is in standard form.
\frac{\left(-\frac{6b}{35}\right)a}{-\frac{6b}{35}}=\frac{7}{-\frac{6b}{35}}
Divide both sides by -\frac{6}{35}b.
a=\frac{7}{-\frac{6b}{35}}
Dividing by -\frac{6}{35}b undoes the multiplication by -\frac{6}{35}b.
a=-\frac{245}{6b}
Divide 7 by -\frac{6}{35}b.
\frac{2}{7}a\left(-\frac{3}{5}\right)b=7
Fraction \frac{-3}{5} can be rewritten as -\frac{3}{5} by extracting the negative sign.
-\frac{6}{35}ab=7
Multiply \frac{2}{7} and -\frac{3}{5} to get -\frac{6}{35}.
\left(-\frac{6a}{35}\right)b=7
The equation is in standard form.
\frac{\left(-\frac{6a}{35}\right)b}{-\frac{6a}{35}}=\frac{7}{-\frac{6a}{35}}
Divide both sides by -\frac{6}{35}a.
b=\frac{7}{-\frac{6a}{35}}
Dividing by -\frac{6}{35}a undoes the multiplication by -\frac{6}{35}a.
b=-\frac{245}{6a}
Divide 7 by -\frac{6}{35}a.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}