Solve for t
t = -\frac{34}{9} = -3\frac{7}{9} \approx -3.777777778
Share
Copied to clipboard
\frac{2}{7}t+\frac{2}{7}\times \frac{2}{3}=\frac{1}{5}\left(t-\frac{2}{3}\right)
Use the distributive property to multiply \frac{2}{7} by t+\frac{2}{3}.
\frac{2}{7}t+\frac{2\times 2}{7\times 3}=\frac{1}{5}\left(t-\frac{2}{3}\right)
Multiply \frac{2}{7} times \frac{2}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{2}{7}t+\frac{4}{21}=\frac{1}{5}\left(t-\frac{2}{3}\right)
Do the multiplications in the fraction \frac{2\times 2}{7\times 3}.
\frac{2}{7}t+\frac{4}{21}=\frac{1}{5}t+\frac{1}{5}\left(-\frac{2}{3}\right)
Use the distributive property to multiply \frac{1}{5} by t-\frac{2}{3}.
\frac{2}{7}t+\frac{4}{21}=\frac{1}{5}t+\frac{1\left(-2\right)}{5\times 3}
Multiply \frac{1}{5} times -\frac{2}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{2}{7}t+\frac{4}{21}=\frac{1}{5}t+\frac{-2}{15}
Do the multiplications in the fraction \frac{1\left(-2\right)}{5\times 3}.
\frac{2}{7}t+\frac{4}{21}=\frac{1}{5}t-\frac{2}{15}
Fraction \frac{-2}{15} can be rewritten as -\frac{2}{15} by extracting the negative sign.
\frac{2}{7}t+\frac{4}{21}-\frac{1}{5}t=-\frac{2}{15}
Subtract \frac{1}{5}t from both sides.
\frac{3}{35}t+\frac{4}{21}=-\frac{2}{15}
Combine \frac{2}{7}t and -\frac{1}{5}t to get \frac{3}{35}t.
\frac{3}{35}t=-\frac{2}{15}-\frac{4}{21}
Subtract \frac{4}{21} from both sides.
\frac{3}{35}t=-\frac{14}{105}-\frac{20}{105}
Least common multiple of 15 and 21 is 105. Convert -\frac{2}{15} and \frac{4}{21} to fractions with denominator 105.
\frac{3}{35}t=\frac{-14-20}{105}
Since -\frac{14}{105} and \frac{20}{105} have the same denominator, subtract them by subtracting their numerators.
\frac{3}{35}t=-\frac{34}{105}
Subtract 20 from -14 to get -34.
t=-\frac{34}{105}\times \frac{35}{3}
Multiply both sides by \frac{35}{3}, the reciprocal of \frac{3}{35}.
t=\frac{-34\times 35}{105\times 3}
Multiply -\frac{34}{105} times \frac{35}{3} by multiplying numerator times numerator and denominator times denominator.
t=\frac{-1190}{315}
Do the multiplications in the fraction \frac{-34\times 35}{105\times 3}.
t=-\frac{34}{9}
Reduce the fraction \frac{-1190}{315} to lowest terms by extracting and canceling out 35.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}