Solve for x
x<-8
Graph
Share
Copied to clipboard
\frac{2}{7}\times 3+\frac{2}{7}\left(-4\right)x+8>18
Use the distributive property to multiply \frac{2}{7} by 3-4x.
\frac{2\times 3}{7}+\frac{2}{7}\left(-4\right)x+8>18
Express \frac{2}{7}\times 3 as a single fraction.
\frac{6}{7}+\frac{2}{7}\left(-4\right)x+8>18
Multiply 2 and 3 to get 6.
\frac{6}{7}+\frac{2\left(-4\right)}{7}x+8>18
Express \frac{2}{7}\left(-4\right) as a single fraction.
\frac{6}{7}+\frac{-8}{7}x+8>18
Multiply 2 and -4 to get -8.
\frac{6}{7}-\frac{8}{7}x+8>18
Fraction \frac{-8}{7} can be rewritten as -\frac{8}{7} by extracting the negative sign.
\frac{6}{7}-\frac{8}{7}x+\frac{56}{7}>18
Convert 8 to fraction \frac{56}{7}.
\frac{6+56}{7}-\frac{8}{7}x>18
Since \frac{6}{7} and \frac{56}{7} have the same denominator, add them by adding their numerators.
\frac{62}{7}-\frac{8}{7}x>18
Add 6 and 56 to get 62.
-\frac{8}{7}x>18-\frac{62}{7}
Subtract \frac{62}{7} from both sides.
-\frac{8}{7}x>\frac{126}{7}-\frac{62}{7}
Convert 18 to fraction \frac{126}{7}.
-\frac{8}{7}x>\frac{126-62}{7}
Since \frac{126}{7} and \frac{62}{7} have the same denominator, subtract them by subtracting their numerators.
-\frac{8}{7}x>\frac{64}{7}
Subtract 62 from 126 to get 64.
x<\frac{64}{7}\left(-\frac{7}{8}\right)
Multiply both sides by -\frac{7}{8}, the reciprocal of -\frac{8}{7}. Since -\frac{8}{7} is negative, the inequality direction is changed.
x<\frac{64\left(-7\right)}{7\times 8}
Multiply \frac{64}{7} times -\frac{7}{8} by multiplying numerator times numerator and denominator times denominator.
x<\frac{-448}{56}
Do the multiplications in the fraction \frac{64\left(-7\right)}{7\times 8}.
x<-8
Divide -448 by 56 to get -8.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}