Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\frac{1}{3}+\frac{3n}{n^{2}-5n+4}
Reduce the fraction \frac{2}{6} to lowest terms by extracting and canceling out 2.
\frac{1}{3}+\frac{3n}{\left(n-4\right)\left(n-1\right)}
Factor n^{2}-5n+4.
\frac{\left(n-4\right)\left(n-1\right)}{3\left(n-4\right)\left(n-1\right)}+\frac{3\times 3n}{3\left(n-4\right)\left(n-1\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 3 and \left(n-4\right)\left(n-1\right) is 3\left(n-4\right)\left(n-1\right). Multiply \frac{1}{3} times \frac{\left(n-4\right)\left(n-1\right)}{\left(n-4\right)\left(n-1\right)}. Multiply \frac{3n}{\left(n-4\right)\left(n-1\right)} times \frac{3}{3}.
\frac{\left(n-4\right)\left(n-1\right)+3\times 3n}{3\left(n-4\right)\left(n-1\right)}
Since \frac{\left(n-4\right)\left(n-1\right)}{3\left(n-4\right)\left(n-1\right)} and \frac{3\times 3n}{3\left(n-4\right)\left(n-1\right)} have the same denominator, add them by adding their numerators.
\frac{n^{2}-n-4n+4+9n}{3\left(n-4\right)\left(n-1\right)}
Do the multiplications in \left(n-4\right)\left(n-1\right)+3\times 3n.
\frac{n^{2}+4n+4}{3\left(n-4\right)\left(n-1\right)}
Combine like terms in n^{2}-n-4n+4+9n.
\frac{n^{2}+4n+4}{3n^{2}-15n+12}
Expand 3\left(n-4\right)\left(n-1\right).