Evaluate
\frac{\left(n+2\right)^{2}}{3\left(n-4\right)\left(n-1\right)}
Factor
\frac{\left(n+2\right)^{2}}{3\left(n-4\right)\left(n-1\right)}
Share
Copied to clipboard
\frac{1}{3}+\frac{3n}{n^{2}-5n+4}
Reduce the fraction \frac{2}{6} to lowest terms by extracting and canceling out 2.
\frac{1}{3}+\frac{3n}{\left(n-4\right)\left(n-1\right)}
Factor n^{2}-5n+4.
\frac{\left(n-4\right)\left(n-1\right)}{3\left(n-4\right)\left(n-1\right)}+\frac{3\times 3n}{3\left(n-4\right)\left(n-1\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 3 and \left(n-4\right)\left(n-1\right) is 3\left(n-4\right)\left(n-1\right). Multiply \frac{1}{3} times \frac{\left(n-4\right)\left(n-1\right)}{\left(n-4\right)\left(n-1\right)}. Multiply \frac{3n}{\left(n-4\right)\left(n-1\right)} times \frac{3}{3}.
\frac{\left(n-4\right)\left(n-1\right)+3\times 3n}{3\left(n-4\right)\left(n-1\right)}
Since \frac{\left(n-4\right)\left(n-1\right)}{3\left(n-4\right)\left(n-1\right)} and \frac{3\times 3n}{3\left(n-4\right)\left(n-1\right)} have the same denominator, add them by adding their numerators.
\frac{n^{2}-n-4n+4+9n}{3\left(n-4\right)\left(n-1\right)}
Do the multiplications in \left(n-4\right)\left(n-1\right)+3\times 3n.
\frac{n^{2}+4n+4}{3\left(n-4\right)\left(n-1\right)}
Combine like terms in n^{2}-n-4n+4+9n.
\frac{n^{2}+4n+4}{3n^{2}-15n+12}
Expand 3\left(n-4\right)\left(n-1\right).
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}