Solve for b
b=-\frac{125a\left(a-10\right)}{3\left(a^{2}-500\right)}
a\neq 10\text{ and }a\neq 0\text{ and }|a|\neq 10\sqrt{5}
Solve for a
\left\{\begin{matrix}a=\frac{5\left(\sqrt{5\left(36b^{2}+1500b+3125\right)}+125\right)}{3b+125}\text{; }a=\frac{5\left(-\sqrt{5\left(36b^{2}+1500b+3125\right)}+125\right)}{3b+125}\text{, }&\left(b\neq 0\text{ and }b\geq \frac{25\sqrt{5}}{3}-\frac{125}{6}\right)\text{ or }\left(b\neq -\frac{125}{3}\text{ and }b\leq -\frac{25\sqrt{5}}{3}-\frac{125}{6}\right)\\a=50\text{, }&b=-\frac{125}{3}\end{matrix}\right.
Share
Copied to clipboard
\frac{3}{250}ba^{3}\times 2+a^{3}=2\left(6ab+5a^{2}\right)
Variable b cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 30ba^{3}, the least common multiple of 30b,15a^{3}b.
\frac{3}{125}ba^{3}+a^{3}=2\left(6ab+5a^{2}\right)
Multiply \frac{3}{250} and 2 to get \frac{3}{125}.
\frac{3}{125}ba^{3}+a^{3}=12ab+10a^{2}
Use the distributive property to multiply 2 by 6ab+5a^{2}.
\frac{3}{125}ba^{3}+a^{3}-12ab=10a^{2}
Subtract 12ab from both sides.
\frac{3}{125}ba^{3}-12ab=10a^{2}-a^{3}
Subtract a^{3} from both sides.
\left(\frac{3}{125}a^{3}-12a\right)b=10a^{2}-a^{3}
Combine all terms containing b.
\left(\frac{3a^{3}}{125}-12a\right)b=10a^{2}-a^{3}
The equation is in standard form.
\frac{\left(\frac{3a^{3}}{125}-12a\right)b}{\frac{3a^{3}}{125}-12a}=\frac{\left(10-a\right)a^{2}}{\frac{3a^{3}}{125}-12a}
Divide both sides by \frac{3}{125}a^{3}-12a.
b=\frac{\left(10-a\right)a^{2}}{\frac{3a^{3}}{125}-12a}
Dividing by \frac{3}{125}a^{3}-12a undoes the multiplication by \frac{3}{125}a^{3}-12a.
b=\frac{125a\left(10-a\right)}{3\left(a^{2}-500\right)}
Divide \left(10-a\right)a^{2} by \frac{3}{125}a^{3}-12a.
b=\frac{125a\left(10-a\right)}{3\left(a^{2}-500\right)}\text{, }b\neq 0
Variable b cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}