Skip to main content
Solve for b
Tick mark Image
Solve for a
Tick mark Image

Similar Problems from Web Search

Share

\frac{3}{250}ba^{3}\times 2+a^{3}=2\left(6ab+5a^{2}\right)
Variable b cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 30ba^{3}, the least common multiple of 30b,15a^{3}b.
\frac{3}{125}ba^{3}+a^{3}=2\left(6ab+5a^{2}\right)
Multiply \frac{3}{250} and 2 to get \frac{3}{125}.
\frac{3}{125}ba^{3}+a^{3}=12ab+10a^{2}
Use the distributive property to multiply 2 by 6ab+5a^{2}.
\frac{3}{125}ba^{3}+a^{3}-12ab=10a^{2}
Subtract 12ab from both sides.
\frac{3}{125}ba^{3}-12ab=10a^{2}-a^{3}
Subtract a^{3} from both sides.
\left(\frac{3}{125}a^{3}-12a\right)b=10a^{2}-a^{3}
Combine all terms containing b.
\left(\frac{3a^{3}}{125}-12a\right)b=10a^{2}-a^{3}
The equation is in standard form.
\frac{\left(\frac{3a^{3}}{125}-12a\right)b}{\frac{3a^{3}}{125}-12a}=\frac{\left(10-a\right)a^{2}}{\frac{3a^{3}}{125}-12a}
Divide both sides by \frac{3}{125}a^{3}-12a.
b=\frac{\left(10-a\right)a^{2}}{\frac{3a^{3}}{125}-12a}
Dividing by \frac{3}{125}a^{3}-12a undoes the multiplication by \frac{3}{125}a^{3}-12a.
b=\frac{125a\left(10-a\right)}{3\left(a^{2}-500\right)}
Divide \left(10-a\right)a^{2} by \frac{3}{125}a^{3}-12a.
b=\frac{125a\left(10-a\right)}{3\left(a^{2}-500\right)}\text{, }b\neq 0
Variable b cannot be equal to 0.