Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{2\left(5+3i\right)}{\left(5-3i\right)\left(5+3i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, 5+3i.
\frac{2\left(5+3i\right)}{5^{2}-3^{2}i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{2\left(5+3i\right)}{34}
By definition, i^{2} is -1. Calculate the denominator.
\frac{2\times 5+2\times \left(3i\right)}{34}
Multiply 2 times 5+3i.
\frac{10+6i}{34}
Do the multiplications in 2\times 5+2\times \left(3i\right).
\frac{5}{17}+\frac{3}{17}i
Divide 10+6i by 34 to get \frac{5}{17}+\frac{3}{17}i.
Re(\frac{2\left(5+3i\right)}{\left(5-3i\right)\left(5+3i\right)})
Multiply both numerator and denominator of \frac{2}{5-3i} by the complex conjugate of the denominator, 5+3i.
Re(\frac{2\left(5+3i\right)}{5^{2}-3^{2}i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{2\left(5+3i\right)}{34})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{2\times 5+2\times \left(3i\right)}{34})
Multiply 2 times 5+3i.
Re(\frac{10+6i}{34})
Do the multiplications in 2\times 5+2\times \left(3i\right).
Re(\frac{5}{17}+\frac{3}{17}i)
Divide 10+6i by 34 to get \frac{5}{17}+\frac{3}{17}i.
\frac{5}{17}
The real part of \frac{5}{17}+\frac{3}{17}i is \frac{5}{17}.