Evaluate
\frac{20}{7}\approx 2.857142857
Factor
\frac{2 ^ {2} \cdot 5}{7} = 2\frac{6}{7} = 2.857142857142857
Share
Copied to clipboard
\frac{2\left(5+3\sqrt{2}\right)}{\left(5-3\sqrt{2}\right)\left(5+3\sqrt{2}\right)}+\frac{2}{5+3\sqrt{2}}
Rationalize the denominator of \frac{2}{5-3\sqrt{2}} by multiplying numerator and denominator by 5+3\sqrt{2}.
\frac{2\left(5+3\sqrt{2}\right)}{5^{2}-\left(-3\sqrt{2}\right)^{2}}+\frac{2}{5+3\sqrt{2}}
Consider \left(5-3\sqrt{2}\right)\left(5+3\sqrt{2}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{2\left(5+3\sqrt{2}\right)}{25-\left(-3\sqrt{2}\right)^{2}}+\frac{2}{5+3\sqrt{2}}
Calculate 5 to the power of 2 and get 25.
\frac{2\left(5+3\sqrt{2}\right)}{25-\left(-3\right)^{2}\left(\sqrt{2}\right)^{2}}+\frac{2}{5+3\sqrt{2}}
Expand \left(-3\sqrt{2}\right)^{2}.
\frac{2\left(5+3\sqrt{2}\right)}{25-9\left(\sqrt{2}\right)^{2}}+\frac{2}{5+3\sqrt{2}}
Calculate -3 to the power of 2 and get 9.
\frac{2\left(5+3\sqrt{2}\right)}{25-9\times 2}+\frac{2}{5+3\sqrt{2}}
The square of \sqrt{2} is 2.
\frac{2\left(5+3\sqrt{2}\right)}{25-18}+\frac{2}{5+3\sqrt{2}}
Multiply 9 and 2 to get 18.
\frac{2\left(5+3\sqrt{2}\right)}{7}+\frac{2}{5+3\sqrt{2}}
Subtract 18 from 25 to get 7.
\frac{2\left(5+3\sqrt{2}\right)}{7}+\frac{2\left(5-3\sqrt{2}\right)}{\left(5+3\sqrt{2}\right)\left(5-3\sqrt{2}\right)}
Rationalize the denominator of \frac{2}{5+3\sqrt{2}} by multiplying numerator and denominator by 5-3\sqrt{2}.
\frac{2\left(5+3\sqrt{2}\right)}{7}+\frac{2\left(5-3\sqrt{2}\right)}{5^{2}-\left(3\sqrt{2}\right)^{2}}
Consider \left(5+3\sqrt{2}\right)\left(5-3\sqrt{2}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{2\left(5+3\sqrt{2}\right)}{7}+\frac{2\left(5-3\sqrt{2}\right)}{25-\left(3\sqrt{2}\right)^{2}}
Calculate 5 to the power of 2 and get 25.
\frac{2\left(5+3\sqrt{2}\right)}{7}+\frac{2\left(5-3\sqrt{2}\right)}{25-3^{2}\left(\sqrt{2}\right)^{2}}
Expand \left(3\sqrt{2}\right)^{2}.
\frac{2\left(5+3\sqrt{2}\right)}{7}+\frac{2\left(5-3\sqrt{2}\right)}{25-9\left(\sqrt{2}\right)^{2}}
Calculate 3 to the power of 2 and get 9.
\frac{2\left(5+3\sqrt{2}\right)}{7}+\frac{2\left(5-3\sqrt{2}\right)}{25-9\times 2}
The square of \sqrt{2} is 2.
\frac{2\left(5+3\sqrt{2}\right)}{7}+\frac{2\left(5-3\sqrt{2}\right)}{25-18}
Multiply 9 and 2 to get 18.
\frac{2\left(5+3\sqrt{2}\right)}{7}+\frac{2\left(5-3\sqrt{2}\right)}{7}
Subtract 18 from 25 to get 7.
\frac{2\left(5+3\sqrt{2}\right)+2\left(5-3\sqrt{2}\right)}{7}
Since \frac{2\left(5+3\sqrt{2}\right)}{7} and \frac{2\left(5-3\sqrt{2}\right)}{7} have the same denominator, add them by adding their numerators.
\frac{10+6\sqrt{2}+10-6\sqrt{2}}{7}
Do the multiplications in 2\left(5+3\sqrt{2}\right)+2\left(5-3\sqrt{2}\right).
\frac{20}{7}
Do the calculations in 10+6\sqrt{2}+10-6\sqrt{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}