Evaluate
\frac{101x}{15}-\frac{5}{4}
Expand
\frac{101x}{15}-\frac{5}{4}
Graph
Share
Copied to clipboard
\frac{69}{10}x-\frac{5}{3}+\frac{2}{3}-\left(\frac{1}{6}x+\frac{1}{4}\right)
Combine \frac{2}{5}x and \frac{13}{2}x to get \frac{69}{10}x.
\frac{69}{10}x+\frac{-5+2}{3}-\left(\frac{1}{6}x+\frac{1}{4}\right)
Since -\frac{5}{3} and \frac{2}{3} have the same denominator, add them by adding their numerators.
\frac{69}{10}x+\frac{-3}{3}-\left(\frac{1}{6}x+\frac{1}{4}\right)
Add -5 and 2 to get -3.
\frac{69}{10}x-1-\left(\frac{1}{6}x+\frac{1}{4}\right)
Divide -3 by 3 to get -1.
\frac{69}{10}x-1-\frac{1}{6}x-\frac{1}{4}
To find the opposite of \frac{1}{6}x+\frac{1}{4}, find the opposite of each term.
\frac{101}{15}x-1-\frac{1}{4}
Combine \frac{69}{10}x and -\frac{1}{6}x to get \frac{101}{15}x.
\frac{101}{15}x-\frac{4}{4}-\frac{1}{4}
Convert -1 to fraction -\frac{4}{4}.
\frac{101}{15}x+\frac{-4-1}{4}
Since -\frac{4}{4} and \frac{1}{4} have the same denominator, subtract them by subtracting their numerators.
\frac{101}{15}x-\frac{5}{4}
Subtract 1 from -4 to get -5.
\frac{69}{10}x-\frac{5}{3}+\frac{2}{3}-\left(\frac{1}{6}x+\frac{1}{4}\right)
Combine \frac{2}{5}x and \frac{13}{2}x to get \frac{69}{10}x.
\frac{69}{10}x+\frac{-5+2}{3}-\left(\frac{1}{6}x+\frac{1}{4}\right)
Since -\frac{5}{3} and \frac{2}{3} have the same denominator, add them by adding their numerators.
\frac{69}{10}x+\frac{-3}{3}-\left(\frac{1}{6}x+\frac{1}{4}\right)
Add -5 and 2 to get -3.
\frac{69}{10}x-1-\left(\frac{1}{6}x+\frac{1}{4}\right)
Divide -3 by 3 to get -1.
\frac{69}{10}x-1-\frac{1}{6}x-\frac{1}{4}
To find the opposite of \frac{1}{6}x+\frac{1}{4}, find the opposite of each term.
\frac{101}{15}x-1-\frac{1}{4}
Combine \frac{69}{10}x and -\frac{1}{6}x to get \frac{101}{15}x.
\frac{101}{15}x-\frac{4}{4}-\frac{1}{4}
Convert -1 to fraction -\frac{4}{4}.
\frac{101}{15}x+\frac{-4-1}{4}
Since -\frac{4}{4} and \frac{1}{4} have the same denominator, subtract them by subtracting their numerators.
\frac{101}{15}x-\frac{5}{4}
Subtract 1 from -4 to get -5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}