Evaluate
-\frac{6x}{35}-\frac{31}{140}
Factor
\frac{-24x-31}{140}
Graph
Share
Copied to clipboard
\frac{2\left(-3\right)}{5\times 7}x-\frac{1}{6}\times \frac{3}{2}+\frac{1}{14}\times \frac{2}{5}
Multiply \frac{2}{5} times -\frac{3}{7} by multiplying numerator times numerator and denominator times denominator.
\frac{-6}{35}x-\frac{1}{6}\times \frac{3}{2}+\frac{1}{14}\times \frac{2}{5}
Do the multiplications in the fraction \frac{2\left(-3\right)}{5\times 7}.
-\frac{6}{35}x-\frac{1}{6}\times \frac{3}{2}+\frac{1}{14}\times \frac{2}{5}
Fraction \frac{-6}{35} can be rewritten as -\frac{6}{35} by extracting the negative sign.
-\frac{6}{35}x-\frac{1\times 3}{6\times 2}+\frac{1}{14}\times \frac{2}{5}
Multiply \frac{1}{6} times \frac{3}{2} by multiplying numerator times numerator and denominator times denominator.
-\frac{6}{35}x-\frac{3}{12}+\frac{1}{14}\times \frac{2}{5}
Do the multiplications in the fraction \frac{1\times 3}{6\times 2}.
-\frac{6}{35}x-\frac{1}{4}+\frac{1}{14}\times \frac{2}{5}
Reduce the fraction \frac{3}{12} to lowest terms by extracting and canceling out 3.
-\frac{6}{35}x-\frac{1}{4}+\frac{1\times 2}{14\times 5}
Multiply \frac{1}{14} times \frac{2}{5} by multiplying numerator times numerator and denominator times denominator.
-\frac{6}{35}x-\frac{1}{4}+\frac{2}{70}
Do the multiplications in the fraction \frac{1\times 2}{14\times 5}.
-\frac{6}{35}x-\frac{1}{4}+\frac{1}{35}
Reduce the fraction \frac{2}{70} to lowest terms by extracting and canceling out 2.
-\frac{6}{35}x-\frac{35}{140}+\frac{4}{140}
Least common multiple of 4 and 35 is 140. Convert -\frac{1}{4} and \frac{1}{35} to fractions with denominator 140.
-\frac{6}{35}x+\frac{-35+4}{140}
Since -\frac{35}{140} and \frac{4}{140} have the same denominator, add them by adding their numerators.
-\frac{6}{35}x-\frac{31}{140}
Add -35 and 4 to get -31.
\frac{-24x-31}{140}
Factor out \frac{1}{140}.
-24x-31
Consider -24x-35+4. Multiply and combine like terms.
\frac{-24x-31}{140}
Rewrite the complete factored expression.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}