Solve for x
x = -\frac{125}{3} = -41\frac{2}{3} \approx -41.666666667
Graph
Share
Copied to clipboard
\frac{2}{5}x=\frac{5}{11}x+\frac{5}{11}\times 5
Use the distributive property to multiply \frac{5}{11} by x+5.
\frac{2}{5}x=\frac{5}{11}x+\frac{5\times 5}{11}
Express \frac{5}{11}\times 5 as a single fraction.
\frac{2}{5}x=\frac{5}{11}x+\frac{25}{11}
Multiply 5 and 5 to get 25.
\frac{2}{5}x-\frac{5}{11}x=\frac{25}{11}
Subtract \frac{5}{11}x from both sides.
-\frac{3}{55}x=\frac{25}{11}
Combine \frac{2}{5}x and -\frac{5}{11}x to get -\frac{3}{55}x.
x=\frac{25}{11}\left(-\frac{55}{3}\right)
Multiply both sides by -\frac{55}{3}, the reciprocal of -\frac{3}{55}.
x=\frac{25\left(-55\right)}{11\times 3}
Multiply \frac{25}{11} times -\frac{55}{3} by multiplying numerator times numerator and denominator times denominator.
x=\frac{-1375}{33}
Do the multiplications in the fraction \frac{25\left(-55\right)}{11\times 3}.
x=-\frac{125}{3}
Reduce the fraction \frac{-1375}{33} to lowest terms by extracting and canceling out 11.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}